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In this paper we develop maximum likelihood procedures for parameter estimation and model selec-
tion that apply to a large class of point process models that have been used to model rainfall occurrences,
including Cox processes, Neyman-Scott processes, and renewal processes. The statistical inference pro-
cedures are based on the stochastic intensity A(t) = lim,_ 5o (I/S)E[N(t + s) — N@®IN(), u < t]. The
likelihood function of a point process is shown to have a simple expression in terms of the stochastic
intensity. The main result of this paper is a recursive procedure for computing stochastic intensities; the
procedure is applicable to a broad class of point process models, including renewal Cox process with
Markovian intensity processes and an important class of Neyman-Scott processes. The model selection
procedure we propose, which is based on likelihood ratios, allows direct comparison of two classes of
point processes to determine which provides a better model for a given data set. The estimation and
model selection procedures are applied to two data sets of simulated Cox process arrivals and a data set
of daily rainfall occurrences in the Potomac River basin.

1.

The Poisson processes have played a predominant role in
modeling rainfall occurrences [Todorovic and Yevjevich,
1969]. A particularly attractive feature of Poisson processes is
availability of effective and well-understood procedures for pa-
rameter estimation and hypothesis testing. Application of the
hypothesis testing procedures, however, has shown that for
numerous rainfall occurrence data sets the “correct” model is
not a Poisson process [Kavvas and Delleur, 1981; Smith and
Karr, 1983]. As a consequence, a number of alternatives to the
Poisson processes have been proposed for modeling rainfall
occurrences. These models generally fall into three broad (and
not disjoint) classes: Neyman-Scott cluster processes [Kavvas
and Delleur, 1981; Waymire and Gupta, 1981; Ramirez and
Bras, 1982], Cox processes [Smith and Karr, 1983], and re-
newal processes [Grace and Eagleson, 1966; Rodhe and Gran-
dell, 1981]. In an assessment of precipitation research pre-
pared by the Committee on Precipitation of the AGU Hydrol-
ogy Section [AGU, 1984], it is noted that “model development
has outpaced the development of inference procedures”. As a
consequence, development of parameter estimation and hy-
pothesis testing procedures for stochastic rainfall models has
become a “critical problem” of precipitation research.

In this paper we develop maximum likelihood procedures
for parameter estimation and model selection that are appli-
cable to the main point process models that have been used to
model rainfall occurrences, including Neyman-Scott processes,
Cox processes, and renewal processes. Of the three classes,
only renewal processes have well-established estimation pro-
- cedures. Kavvas and Delleur [1981] and Ramirez and Bras
[1982] have used second-order moments of the counting pro-
cess to estimate parameters of Neyman-Scott processes; both
studies report that serious problems are encountered using
this method. The model selection procedure developed in this
paper differs from available methods which are designed to
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decide whether a specified model is the “correct” ‘model for a
given data set. The most commonly used model selection pro-
cedures have been those used to test whether the correct
model for a given data set is a Poisson process. The procedure
we describe, which is based on likelihood ratios, is designed to
determine which of two competing classes of point processes
provides a better model for a given data set. For example, a
test can be formulated to determine whether a Neyman-Scott
process or a renewal process with gamma-distributed interar-
rival times provides a better model.

Brémaud [1981] notes that in applications of point pro-
cesses two schools can be distinguished. The first school “takes
the moment point of view and aims at fitting a model to given
moment functions estimated from collected data”, while the
second school “describes its models by means of a stochastic
intensity which summarizes at a given instant the potential to
generate an event in the near future, given some observations
of the past including the complete record of all previous times
of occurrences.” The inference procedures developed in section
3 belong to the second school and are based on the stochastic
intensity

M) = lim (1/)E[N(t + s) — N@)IN(), u < £]

s—0,s>0

¢Y)

which formalizes the notion of stochastic intensity described
above.

The inference procedures described in this paper were devel-
oped primarily for application to Cox processes and Neyman-
Scott processes. These two classes are of special interest in
modeling rainfall because their components have been related
to specific physical mechanisms. Kavvas and Delleur [1981]
have shown that the components of a Neyman-Scott process
have a natural interpretation based on frontogenesis: cluster
centers correspond to fronts, each of which has a random
number of precipitation events associated with it. Cox pro-
cesses can be interpreted as Poisson processes with randomly
varying rates of occurrence. For modeling rainfall the random
rate of occurrence has been interpreted as a “stochastic clima-
tological process”. In the Cox process model developed by
Smith and Karr [1983] for summer season rainfall oc-
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Fig. 1. Sample path for an RCM process and its associated direc-

ting process.

currences, the random rate process is related to the frequency
and duration of the anticyclonic conditions. —

Problems of statistical inference assume added importance
when one deals with physically based models. Model selection
in this context can potentially be used to distinguish between
hypotheses concerning physical mechanisms. Model selection
between Cox process and Neyman-Scott process models has

been commonly used in plant and human geography to dis- -

tinguish between “central location” and “random media”
theories (see, for example, Harvey [1968]). The importance of
parameter estimation for rainfall-runoff models has been dem-
onstrated in numerous studies [e.g., Sorooshian and Dracup,
1980; Kuczera, 1982]. These studies demonstrate that one
consequence of poor estimation procedures is that parameters
of physically based models lose their physical significance.

Implementation of the estimation and model selection pro-
cedures is illustrated in section 4. The procedures are applied
to two sets of simulated Cox process data and a data set of
summer season rainfall occurrences in the Potomac River
basin. The examples using simulated data illustrate the role of
convergence rates of estimators for inference problems. Esti-
mated parameters for the Cox process model developed by
Smith and Karr [1983], using the historical data, are consis-
tent with physical interpretations of model components.

2. DEFINITIONS AND NOTATION

A point process on the half line [0, c0) is a random process
representing the times of occurrences of events. Denote by
T(n) the time of the nth event, with T(0) = 0. The interarrival
times U(i) = T(i + 1) — T(i) represent times between events.
The counting process (N(¢), ¢ > 0) is defined by

N@ity=n te[T(n), T(n + 1))

We use the notation N(4), i.e., N with an uppercase argument,
for the number of events in a subset 4 of [0, ).

Let {X()} be a nonnegative stochastic process defined on
[0, o0), and let

M(A4) =f X(u) du A < [0, )

A point process N is a Cox process directed by X provided
that
1. For disjoint sets 4, ...,
ables N(4,), .
{X(0), £ = 0}.
2. For every A < [0, oo) the conditional distribution of
N(A) given {X(1), t > 0} is Poisson with parameter M(A).

A, < [0, o0), the random vari-
, N(4,) are conditionally independent given

A renewal Cox process with Markovian intensity (RCM)
process is a Cox process for which the directing process {X ()}
is a two state Markov process with one of the states 0 and the
other state ¢ > 0 [see Smith and Karr, 1983]. The point pro-
cess behaves as follows: when {X(¢)} is in state zero, no events
can occur (for rainfall modeling this corresponds to a “dry”
climatological state), and when {X(f)} is in state c, events
occur according to an ordinary Poisson process with rate c.
An RCM process has three parameters: the rate ¢, and the
exponential sojourn parameters a and b, representing the so-
journ distributions of {X(#)} in ¢ and 0, respectively. Figure 1
illustrates a sample path of an RCM process and its associated
directing process.

A Neyman-Scott process is constructed starting from an
ordinary Poisson process N of primary points (“cluster cen-
ters”), associated to each of which are a random number of
randomly located secondary points (“cluster members”). which
are independent and identically distributed about their cluster
center, and which constitute the events of the process. Fur-
thermore, the distances from cluster members to their cluster
center are independent of the number of members in the clus-
ter. Figure 2 illustrates the structure of a Neyman-Scott pro-
cess; detailed description can be found in the work by Kavvas
and Delleur [1981].

A point process N is a (stationary) renewal process if the
interarrival times U(i), i > 1, are independent and identically
distributed (IID) with distribution F having finite mean, and
T(1), the time to the first event, is independent of the U(j) with
distribution

G = ft(l — F(s)) ds / f "t = Fo) ds @
o 0

For a detailed discussion of renewal processes consult Cinlar
[1975].

The sample function density p(n, s,, ..., s,) of a point pro-
cess N with observations until time ¢ is the joint probability
density function of the number and times of events, i.e.,

P{N() = n, T(1)eA,, ..., T(n)e 4,}

=f J p(n, sy, ..., 5,) ds; ... ds, 3)
A1 An

Heuristically, the sample function density p(n, s,, ..., s,) can be
viewed as the probability of n events occurring in the interval
0, t] at the times sy, ..., s, Typically, dependence of the
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Fig. 2. Tllustration of the structure of a Neyman -Scott cluster
process. (@) N is the cluster center process. (b) N, is the secondary
process for cluster center T). ¢ N , is the secondary process for
cluster center T(2). (d) N is the Neyman-Scott cluster process.
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sample function density on the model parameters 6 is sup-
pressed. The inference procedures developed in section 3 are
based on the likelihood function

10, sy, .. s Su) @

This notation emphasizes that in estimation and testing prob-
lems the data are treated as fixed and the parameters as vari-
able. The log-likelihood function is the logarithm of the likeli-
hood function and is denoted L(0|n, 54, ..., S,).

The stochastic intensity {4(t), ¢t = 0} of a point process N is
defined as follows:

M) =

- 8,) = p(n, sq, ...

lim (1/s)E[N(t + s) — N()IN(u), u < t] )

s—=0,s>0
Heuristically, the stochastic intensity describes the rate of oc-
currence of the point process at time ¢t conditioned on the
history of the point process strictly before time ¢.

3. PARAMETER ESTIMATION AND MODEL SELECTION

In this section we develop maximum likelihood procedures
for parameter estimation and model selection that are appli-
cable to a large class of point processes that have been used to
model rainfall occurrences. The results of this section build
upon two previous works. Ogata [1978] provides motivation
for obtaining maximum likelihood procedures for point pro-
cesses by showing that these procedures possess desirable opti-
mality properties [see also Konecny, 1984]. Most importantly,

" maximum likelihood parameter estimators are consistent, i.e.,
they are asymptotically unbiased, and the variances converge
to zero. This result guarantees that if sufficient data are avail-
able, parameters of physically based models can be estimated,
so that their physical significance is preserved. Maximum like-
lihood estimators are also asymptotically efficient, implying
that convergence rates are faster and variances smaller than
for other estimation procedures. The importance of this result
for applications is indicated in the following section where it is
shown that for RCM model parameter estimators, conver-
gence rates can be quite slow if the process is “nearly Pois-
son,” a situation which arises in modeling the occurrence of
“large” storms.

The second result we use is due to Rubin [1972], who
showed that the sample function density of a point process has
the following representation in terms of the stochastic inten-
Sity:

p(n, s, ..., s,) = €xp {— ft/l(u) du + jtlog (Au) dN(u)}
0 o

(©)

The log-likelihood function for a pointb process N with pa-
rameters 0 and observations over the interval (0, t] is obtained
directly from (6)

L@n, s, ..., 8,) = — J‘tl(u) du + lrlog (Au)) dN(u) 7
o o

Dependence on 0 is through the stochastic intensity 4. Param-
eter estimation based on (7) is standard and straightforward.
The log-likelihood function is maximized (analytically or nu-
merically) as a function of the unknown parameters. The pa-
rameter values that produce the maximum log-likelihood
value are the maximum likelihood estimators.

The model selection procedure which we propose is not
standard; it may, however, be more appropriate for many

model selection problems faced in precipitation modeling than
other available procedures (some of which are described in the
work by Cox and Lewis [1978]). Our procedure is not used to
decide whether a specific model is “correct,” but simply to
determine which of two given models is better for a given data
set. The model that is selected may not be a “good” model.
The model selection procedure in no way guarantees opti-
mality; it is designed for situations in which the range of
models can be restricted by considerations such as compu-
tational tractability or physical realism.
The procedure is based on the likelihood ratio

A, Sqyenns Sp) = — J [(io(u) — 2,w) du
0

+ flog (o)A, (u) dN@w)  (8)
0

where 4, and A, are stochastic intensities of N under the null
hypothesis H, and the alternative hypothesis H;.

The procedure to choose between model H, and model H,
is carried out in three steps: (1) compute maximum likelihood
estimators for model H, and model H,; (2) form the likeli-
hood ratio using the maximum likelihood estimates obtained
in step 1; (3) model H, is chosen if the log-likelihood ratio is
greater than 0; otherwise model H, is chosen.

The procedures described above can be implemented only if
stochastic intensities can be computed. For one of the three
main classes of point processes that have been used to model
rainfall occurrences, computation of the stochastic intensity is

straightforward.

Example

Let N be a renewal process with interarrival time distri-
bution F and interarrival time density f. Then the stochastic
intensity is given by [Brémaud, 1981]

M) =f(V@)/(1 — F(V(®) ®
where

V(D) =t — T(N() (10)

is the (left-continuous) backward recurrence time at t (the
elapsed time at t since the most recent event). A Poisson pro-
cess is a renewal process with exponentially distributed in-
terarrival times; thus the stochastic intensity for a Poisson
process is given by

M) =m (11)

where m is the parameter of the exponential distribution. Note
that for Poisson processes the stochastic intensity is constant,
implying that the rate of occurrence at a given time ¢ is not
affected by the history of arrivals prior to t.

The importance of intensity-based inference procedures is
that they can be applied to a much wider class of models than
renewal processes. Ogata [1978] and Aalen [1978] describe
several classes of models for which the stochastic intensity has
prescribed, tractable dependence on parameters. These
models, however, have not been used to model rainfall oc-
currences and do not appear to provide any compelling physi-
cal basis for modeling rainfall.

In the remainder of this section we develop a procedure for -
computing stochastic intensities for several classes of models
that have proven useful for modeling rainfall occurrences, in-
cluding Neyman-Scott processes and RCM processes. In the
following discussion two basic points to note are that (1) all of
the point processes can be represented as Cox processes for
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which the directing process is a Markov process; and (2) the
stochastic intensity of a Cox process directed by a Markov
process can be computed “recursively.”

We begin by showing that a large class of Neyman-Scott
processes can be represented as Cox processes directed by a
Markov process.

Proposition 1

Let N be a Neyman-Scott process of the following form:
1. The Poisson process N of cluster centers has parameter

c.
2. The distribution of cluster sizes is Poisson with parame-
ter a.

3. The distances from each cluster center to its cluster
members are IID exponentially distributed with parameter b.
Then the following hold:

1. Nisa Cox process with directing process

t
X()=ab chp (—b(t — w) dN(u) (12)
0

2. The directing process X(¢) is a Markov process.

The first assertion follows from a more general result of Bart-
lett [1964]; the second assertion follows from direct calcula-
tion. -

The following proposition shows that the stochastic inten-

sity of a Cox process directed by X(¢) is simply the conditional -

expectation of X(t) given the history of the point process up
until time ¢ (i.e., the times of arrivals up until ).

Proposition 2

The stochastic intensity of a Cox process N directed by
{X(?)} is given by

A1) = ELX(DIN(u), u < ] (13)

The proof is a straightforward conditioning argument [Smith
and Karr, 1984].

Let N be a Cox process directed by a Markov process
{X()}. Define the conditional moments of X given N as fol-
lows:

X(1) = ELX(9)IN@w), u < 1] (14)
£() = E[X() — XO)!INw), u < ] (15)
&) = E[X() — X))’ IN(u), u < 1] (16)

Note from (13) that X(¢) = A(t); we will use X(t) and A(r) inter-
changeably, hereafter.
The generator A of the Markov process {X(?)} is defined by

Af (x) = lin; (/sKELA(XEIXO) = x] - f(x)}  (17)

where f is a nonnegative function. We use the notation
A(X(ty") for Af(X(t)), where f(x) = x". Finally, we require X(¢)
to be strictly positive (which holds, for example, whenever X(t)
is strictly positive, but also more generally).

The following theorem provides a recursive procedure for
computing stochastic intensities which can be applied to RCM
processes (Corollary 1) and Neyman-Scott processes (Corol-
lary 2).

Theorem

Under the above assumptions, X(t) and £(¢) satisfy the sto-
chastic differential equations

dX(t) = E[AX@)IN(), u < {] dt

+ )X~ YdN®) — X(@t) dr)  (18)

d2(t) = {ELAX()*)INW), u < £]
—~ 2X(OELAX()IN(u), u < t]} dt
+ ®OX(t) (N — X @) dt)

+ 262X (1) 2 dN() (19)

The proof is given in Smith and Karr [1984].

Corollary 1

The stochastic intensity of an RCM process with parame-
ters given above satisfies the stochastic differential equation
dX(t) = {bc — (b + a)X (1)} dt

+ {c — X(©)}dN(t) — X(t) dr)  (20)

Corollary 2

The stochastic intensity and state variance process for the
Neyman-Scott process described above satisfy the stochastic
differential equations

dX(t) = {abc — bX(1)} dt

+ £0X () 'dN@® - X d) (1)
di(t) = {—2b%(t) + a®b?c} dt
+ &)X ()" (dN(t) — X(2) dr)
+ £(1)2X(t)~2 dN(t) (22)

The generator of the Neyman-Scott process can be computed
from (12).

4. IMPLEMENTATION OF INTENSITY-BASED
INFERENCE PROCEDURES

In this section the estimation and hypothesis testing pro-
cedures described (implicitly) in the previous section are illus-
trated in detail for RCM processes.

The basis of the inference procedures described in section 3
is recursive calculation of the stochastic intensity X(¢). This is
achieved for the RCM processes by representing (20) in finite
difference form:

AX(t) = (be — (b + a)X(1)At

+ (c — XONAN(@) — X()A)  (23)

where
AX() = X(t + A1) — X(t) (24)
AN() = N(t + A1) — N(t) (25)

To implement the procedure it is necessary to specify the time
increment At and the initial state X(0); X(0) is obtained for the
RCM processes by selecting the time origin to coincide with
an event of the point process. In this case X(0) is equal to c,
because events can only occur in the RCM process when the
directing process is in the positive state, c. For precipitation
data the natural time increments (i.e., the time increments at
which precipitation is measured) are hourly and daily.
Maximum likelihood estimators for RCM processes cannot
be obtained analytically from (23); they can be obtained nu-
merically, however. A direct search procedure was used to
obtain maximum likelihood estimators for two data sets of
simulated RCM process arrivals. For the first data set the true
parameters are a = 0.12, b = 0.50, and ¢ = 0.12; for the second
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TABLE 1. Maximum Likelihood Estimates for Simulated RCM  TABLE 3. Likelihood Ratio Test Results for Simulated RCM
Process Arrivals Process Arrivals
Sample Sample
Size a b c Size Log-Likelihood Ratio Result
100 0.04 1.10 0.08 100 —-04 reject RCM model
200- 0.06 1.05 0.08 200 —-03 reject RCM model
500 0.16 1.00 0.11 500 —0.6 reject RCM model
900 0.14 0.95 0.11 900 —0.6 reject RCM model

True values are a = 0.12, b = 0.50, and ¢ = 0.12.

data set the true parameters are a=0.50, b =0.12, and
¢ = 0.80. The estimators, for increasing sample size, are given
in Tables 1 and 2.

The data sets of simulated RCM process arrivals were de-
signed to represent two extreme cases: 1) a process very simi-
lar to a Poisson process and 2) a process very different from a
Poisson process. For the first data set the coefficient of vari-
ation of the interarrival times is 1.05. Second-order moments
are similar to those of rainfall occurrences for large storms
[Smith and Karr, 1983]. Second-order moments of the second
data set are not representative of rainfall occurrences in humid
regions of the United States. The second data set represents a
process which exhibits “clustering” of the following form. For
long periods of time no events of the process can occur. These
“dry periods” are interspersed with “wet periods” of short du-
ration during which events occur at very high rate.

A striking feature of Table 1 is the slow rate of convergence
" for estimators of the nearly Poisson process. This suggests that
if one desires to model occurrences of “large storms,” it will
not be possible to accurately estimate all of the parameters of
the RCM model. It may be possible, however, to accurately
estimate functions of the parameters that are of interest (the
probability of no events in specified time intervals, for exam-
ple). Table 2 illustrates that convergence rates are quite rapid
for parameter estimators of the “clustered” process. These two
examples indicate the range of convergence properties that
can be expected for RCM models.

The model selection procedure described in the preceding
section was applied to the two sets of simulated RCM process
data to determine whether an RCM process or a Poisson
process provides a better model. The log-likelihood ratio for
this hypothesis testing problem is given by (see equation (8))

AW, Sgy.or S) = — jt)f(u) du + f 'log (X)) AN(u)
0 0

+ N(t) — N(2) log (N(t)/1) (26)

where X(u) is the stochastic intensity of the RCM process.
Table 3 shows values of the log-likelihood ratio for the data
set consisting of RCM process arrivals with parameters
a=0.12, b = 0.50, and ¢ = 0.12. Surprisingly, the RCM model
is rejected in favor of a Poisson process model for all sample

TABLE 2. Maximum Likelihood Estimates for Simulated RCM
Process Arrivals

Parameter values are a = 0.12, b = 0.50, and ¢ = 0.12.

sizes. This result points to the importance of convergence rates
for parameter estimators in the model selection procedure.
This point is further illustrated in Table 4, which presents
values of the log-likelihood ratio for the data set of RCM
process arrivals with parameters a =0.50, b =0.12, and
¢ = 0.80. In this case the RCM process is accepted for all
sample sizes. Note, also, that the margin by which the RCM
process is accepted (for each sample size) is much larger than
the margin by which the RCM process is rejected for the first
data set.

The examples presented above indicate that sampling
properties of maximum likelihood estimators and likelihood
ratios can play a critical role in inference procedures for point
process models of rainfall. These examples were designed to
illustrate the range of convergence properties that could be
expected in parameter estimation and model selection for
rainfall models. The following example illustrates the per-
formance of the estimation and model selection procedures in
a more typical situation: modeling daily rainfall occurrences
in a humid region.

The estimation and model selection procedures were ap-
plied to a data set of daily rainfall occurrences in the Potomac
River basin. The data set consists of 10 years of daily rainfall
occurrences (i.e., days for which 0.254 mm of rainfall or more
were recorded) at Winchester, Virgina, for the summer season
(July to September). The estimated parameters for this data set
are d = 0.04, b = 0.25,and ¢ = 0.31.

These parameters yield the following interpretation of the
RCM model; the directing process {X(t)} alternates between
wet petiods, which last on the average 25 days (@~ '), and dry
periods, which last on the average 4 days (67%); during wet
periods rainfall events occur on the average every 3 or more
days (¢~ ). Smith and Karr [1983] suggest that the dry state in
an RCM model of summer season rainfall occurrences for the
eastern United States is related to anticyclonic conditions,
while the wet state is dominated by periods of convective
activity. The estimated parameters for Winchester are not in-
consistent with this interpretation. The estimators imply that
the frequency of summer anticyclones in Virginia is approxi-
mately one per month while the mean duration is 4 days;
these values are consistent with charts of tracks and fre-
quencies of anticyclones presented by Klein [1957]. From

TABLE 4. Likelihood Ratio Test Results for Simulated RCM
Process Arrivals

Sample Sample
Size a b c Size Log-Likelihood Ratio Result
100 0.57 0.13 0.92 100 48.4 accept RCM model
200 0.54 0.12 0.85 200 95.0 accept RCM model
500 0.58 0.12 0.87 500 239.6 accept RCM model
900 0.57 0.12 0.83 900 436.2 accept RCM model

True values are a = 0.50, b = 0.12, and ¢ = 0.80.

Parameter values are a = 0.50, b = 0.12, and ¢ = 0.80.
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these results, it can be concluded that the maximum likelihood

procedure produces physically realistic parameter estimators’

using actual precipitation data; the stronger conclusion, that
the estimators have precise physical interpretations, is worthy
of further investigation.

The model selection procedure was applied to the Win-
chester data to determine whether an RCM model or a Pois-
son process model was more appropriate. The RCM model
assumption was accepted. The log-likelihood ratio for 200 ob-
servations was 1.6. Comparing this result with Tables 3 and 4
it can be seen that the margin of acceptance is substantially
larger than the margin by which the RCM assumption was
rejected for the nearly Poisson data set and much smaller than
the margin by which the RCM assumption was accepted for
the second simulated data set.

The recursive procedure for Neyman-Scott processes re-
quires simultaneous computation of the state variance process
of (22). Note also that the equation for the state variance
process includes the third conditional moment &(¢) of the state
estimate. For implementation of the procedure we suggest that
terms involving the third moment be ignored. This assump-
tion is justified, for example, when errors for the state estimate
are approximately normally distributed.

5. SUMMARY AND CONCLUSIONS

The main points of the paper are summarized below.
1. The inference procedures developed in this paper are
based on the stochastic intensity

AMt)= lim (1/s)E[N(t + s) — N@®)IN(w), u < t]
5s—0,5>0

Equation (6) shows that the likelihood function for a point
process has a simple expression in terms of the stochastic
intensity. Thus maximum likelihood estimation can be applied
whenever the stochastic intensity can be computed. Maximum
likelihood procedures are particularly attractive for appli-
cation to RCM and Neyman-Scott processes due to opti-
mality properties of these estimators and due to the difficulties
reported with moment-based estimation procedures for these
classes. Consistency of maximum likelihood estimators
guarantees that if sufficient data are available, the physical
significance of parameters of conceptual models can be pre-
served.

2. A model selection procedure, based on the likelihood
ratio presented in (8), is proposed in section 3. Traditional
testing procedures that are used for model selection are de-
signed to determine whether a specific model is the correct
model or a good model. These procedures are largely re-
stricted to Poisson and renewal processes. The procedure we
propose is designed to allow direct comparison of two classes
of models to determine which is better for a given data set.
The only major restriction on application of the procedure is
that stochastic intensities must be computable.

3. The main result of this paper is the theorem of section
3, which provides a recursive procedure for computing the
stochastic intensity of a Cox process directed by a Markov
process. This class of point processes contains RCM processes
and a large class of Neyman-Scott processes. Proposition 1
shows that a Neyman-Scott process for which the cluster size
distribution is Poisson and the distribution of (relative) lo-
cations of cluster members is exponential can be represented
as a Cox process; furthermore, the directing process is a
Markov process.

4. Application of the estimation and model selection pro-

cedures to simulated RCM process data illustrates the impor-
tance of sampling properties of maximum likelihood esti-
mators and likelihood ratios. The first simulated data set rep-
resents a process that is nearly Poisson; for this data set con-
vergence rates of parameter estimators are extremely slow.
The second data set represents a process that is highly clus-
tered; for it convergence rates are quite rapid.

5. The estimation and model selection procedures are also
applied to a data set of daily rainfall occurrences in the Poto-
mac River basin. Estimated parameters for this data set are
consistent with the interpretation of RCM model components
suggested by Smith and Karr [1983] based on the frequency
and duration of anticyclones. )

6. Application of intensity-based inference procedures has
focused in this paper on stationary point process models. Gen-
eralization to nonstationary point processes is, in principle,
straightforward. An important area in which generalization is
computationally straightforward involves testing whether a
nonstationary Poisson process provides a better model than
an RCM or Neyman-Scott model.

7. The inference procedures developed in this paper
cannot be generalized to point processes in the plane (or
higher dimensions) or to space-time rainfall models such as
those developed by Gupta and Waymire [1979]. Intensity-
based inference procedures are intimately tied to ordering
properties of the real line. These conclusions suggest that de-
veloping estimation and model selection procedures for space-
time rainfall models will be difficult.

REFERENCES

Aalen, O., Nonparametric inference for a family of counting processes,
Ann. Stat., 6(4), 701-726, 1978.

AGU Committee on Precipitation, A new interdisciplinary focus on
precipitation research, Eos Trans. AGU, 65(23), 377-380, 1984.

Bartlett, M. S., The spectral analysis of two-dimensional point pro-
cesses, Biometrika, 51(3), 299-311, 1964.

Brémaud, P., Point Processes and Queues: Martingale Dynamics,
Springer-Verlag, New York, 1981.

Cinlar, E., Introduction to Stochastic Processes, Prentice Hall, En-
glewood Cliffs, N. J., 1975.

Cox, D. R, and P. Lewis, The Statistical Analysis of Series of Events,
Metheun, London, 1978. '

Grace, R., and P. Eagleson, The synthesis of short-time increment
rainfall sequences, MIT Hydrodyn. Lab. Rep. 91, MIT Press, Cam-
bridge, Mass., 1966.

Gupta, V. K., and E. Waymire, A stochastic kinematic study of subsy-
noptic space-time rainfall, Water Resour. Res., 15(3), 637644, 1979.

Harvey, D. W., Some methodological problems in the use of the
Neyman Type A and negative binomial probability distributions in
the analysis of spatial series, Trans. Inst. Br. Geogr., 44, 85-95,
1968.

Kavvas, M. L., and J. Delleur, A stochastic cluster model of daily
rainfall occurrences, Water Resour. Res., 17(4), 1151-1160, 1981.

Klein, W. H.,, Principal tracks and mean frequencies of cyclones and
anticyclones in the northern hemisphere, U.S. Weather Bur. Tech.
Rep. 40, Washington, D. C., 1957.

Konecny, F., Parameter estimation for point processes with partial
observations: A filtering approach, Syst. Control Lett., 4, 218-226,
1984.

Kuczera, G., On the relationship between the reliability of parameter
estimates and hydrologic time series data used in calibration,
Water Resour. Res., 18(1), 146-154, 1982.

Ogata, Y., Asymptotic behaviour of the maximum likelihood esti-
mators for the stationary point processes, Ann. Inst. Stat. Math., 30,
243-261, 1978.

Ramirez, J. A, and R. L. Bras, Optimal irrigation control using sto-
chastic cluster point processes for rainfall modeling and forecasting,
MIT Ralph M. Parsons Lab. Rep. 275, MIT Press, Cambridge,
Mass., 1982, .

Rodhe, H., and J. Grandell, Estimates of characteristic times for pre-
cipitation scavenging, J. Atmos. Sci., 38(2), 370-386, 1981.



SMITH AND KARR: POINT PROCESS RAINFALL MODELS 79

Rubin, I, Regular point processes and their detection, IEEE Trans.
Inf. Theory, 18, 547-557, 1972.

Smith, J. A, and A. F. Karr, A point process model of summer season
rainfall occurrences, Water Resour. Res., 19(1), 95-103, 1983.

Smith, J. A., and A. F. Karr, Inference for Markov-modulated Pois-
son processes, [CPRB Tech. Rep., 1984. '

Sorooshian, S., and J. Dracup, Stochastic parameter estimation pro-
cedures for hydrologic rainfall-runoff models: correlated and he-
teroscedastic error cases, Water Resour. Res., 16(2) 430442, 1980.

Todorovic, P., and V. Yevjevich, Stochastic process of precipitation,
Hydrol. Pap. 35, Colo. State Univ., Fort Collins, 1969.

Waymire, E., and V. K. Gupta, The mathematical structure of rainfall

representations, 2, A review of the theory of point processes, Water
Resour. Res., 17(5), 12731286, 1981.

A. F. Karr, Department of Mathematical Sciences, The Johns Hop-
kins University, Baltimore, MD 21218.

J. A. Smith, Interstate Commission on the Potomac River Basin,
6110 Executive Blvd., Suite 300, Rockville, MD 20852-3903.

(Received September 5, 1984,
revised October 11, 1984;
accepted October 24, 1984.)






