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'CHAPTER 14

Channel routing

D. L. Fread

Hydrologic Research Laboratory,
National Weather Service, NOAA

14.1. INTRODUCTION

Channel routing is a mathematical method (model) to predict the changing
magnitude, speed, and shape of a flood wave as it propagates through water-
ways such as canals, rivers, reservoirs, or estuaries. The flood wave can
emanate from precipitation runoff (rainfall or snowmelt), reservoir releases
(spillway flows or dam-failures), and tides (astronomical and/or wind-
generated).

Channel routing has long been of vital concern to man as he has sought to
predict the characteristic features of a flood wave in his efforts to improve the
transport of water through man-made or natural waterways and to determine
necessary actions to protect life and property from the effects of flooding.
Commencing with investigations as early as the seventeenth century,
mathematical techniques to predict wave propagation have continually been
developed. With the contribution of Saint-Venant in 1871, the basic theory
for one-dimensional analysis of flood wave propagation was formulated;
however, due to the mathematical complexity of Saint-Venant’s theoretical
equations, simplifications were necessary to obtain feasible solutions for the
salient characteristics of the wave. Thereafter, a profusion of simplified flood
routing methods appeared in the literature. It is only within the last 25 years,
with the advent of high-speed electronic computers, that thé complete Saint-
Venant equations could be solved with varying degrees of feasibility.

14.1.1 Scope

In this chapter an overview of the various types of one-dimensional channel
routing models is presented first. Then a detailed description is given of a
particular routing model (FLDWAYV) which is representative of the current
state of the art. This model has wide applicability and feasible computational
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requirements, and it is popular with many hydrologists and engineers. It also
serves as a framework in which many flood routing complexities can be
described and solution techniques presented. Selected applications of the
model are presented. Finally, some suggestions are offered concerning future
requirements and directions in channel routing development.

All mathematical notation used herein is defined when first presented.

14.2 SYNOPSIS OF CHANNEL ROUTING MODELS

Commencing with investigations by such eminent scientists as Newton (1687),
Laplace (1776), Poisson (1816), Boussinesq (1871), and culminating in the one-
dimensional equations of unsteady flow derived by Saint-Venant (1871), the
theoretical foundation for channel routing was essentially achieved. The
original Saint-Venant equations consist of the conservation of mass equation:

A(AV) 0A
—— s+ —=0 14.1
ax ot (14.1
and the conservation of momentum equation:
av Vv dh
—_— V — pui =0 14.2
at * 3x+g<ax+sf) ( )

in which ¢ is time, x is distance along the longitudinal axis of the waterway,
A is cross-sectional area, V is velocity, g is the gravity acceleration constant,
h is the water surface elevation above a datum, and Sy is the friction slope
which may be evaluated using a steady flow empirical formula such as the
Chezy or Manning equation. These are quasi-linear hyperbolic partial
differential equations with two dependent parameters (¥ and 4) and two
independent parameters (x and ¢). A is a known function of A4, and Sy is a
known function of V and A. No analytical solutions can be obtained. Deriva-
tions of the Saint-Venant equations can be found in the following references:
Stoker (1957), Chow (1959), Henderson (1966), Strelkoff (1969), and Liggett
(1975).

Due to the complexities of the Saint-Venant equations, their solution was
not feasible, and various simplified approximations of flood wave propagation
continued to be developed. An exceilent summary of such is presented by
Miller and Yevjevich (1975). The simplified methods may be categorized as:
(1) purely emprical; (2) linearization of the Saint-Venant equations; (3)
hydrological, i.e., based on the conservation of mass and an approximate
relation between flow and storage; and (4) hydraulic, i.e., based on the conser-
vation of mass and a simplified form of the conservation of momentum
equation. In recent years a fifth category of flood routing models, based on
the complete Saint-Venant equations, have become economically feasible as a
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« result of advances in computing equipment and improved numerical solution
techniques. Following is a brief review of several models in each of the five
categories.

14.3 EMPIRICAL MODELS

Some routing models are purely empirical, based on intitution and observa-
tions of past flood waves. Empirical models are limited to applications with
sufficient observations of inflows and outflows of a reach of waterway to
calibrate the essential empirical relationships or routing coefficients. They give
their best resuits when applied to slowly fluctuating rivers with negligible
lateral inflows and backwater effects. They require minimal computational
resources; however, considerable effort can be required to derive the empirical
parameters.

14.3.1 Lag models

Lag is defined as the difference in time between inflow and outflow within a
routing reach. The successive average-lag method developed by Tatum (1940),
assumes that there is a point downstream where the flow (/2) at time (¢3) is
equal to an average flow, i.e. (/; + [>/2. Tatum (1940) found that the number
of successive averages occurring within a reach was approximately the time of
travel of the wave divided by the reach length. Outflow (O) at the end of the
reach is computed by:

On+1=C111+CzIz+...C,....J,H.] (14.3)

where n is the number of subreaches (successive averages) within the routing
reach. The routing coefficients used in the method can be obtained via Tatum’s
approach or by trial and error using observed inflow and outflow hydrographs.
The routing coefficients in equation (14.3) may also be obtained via a least-
squares correlation of inflow and outflow hydrographs as described by Linsley
et al. (1949). A similar lag model known as the progressive average-lag method
was reported by Harris (1970).

14.3.2 Gauge relations

Empirical relationships which relate the flow at a downstream point to that at
an upstream station known as gauge relations are described by Linsley ez al.
(1949). Gauge relations can be based on flow, water elevations, or a combina-
tion of each. The effect of lateral inflows is automatically contained in the
empirical relation.
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14.4 LINEARIZED MODELS

The complexity of the Saint-Venant equations has caused many scientists and
engineers to simplify them in order to obtain solutions. The simplifications
have been to either totally ignore the least important nonlinear terms and /or
to linearize the remaining nonlinear terms in the equations. Given a sufficiently
simplified form of the equations, they can be integrated analytically to obtain
solutions of velocity and water surface elevation for any pair of (x,¢) values
at a relatively small expenditure of computational effort. Usually the most
common simplifying assumptions are: (1) ignore the second term in equation
(14.2); (2) constant cross-sectional area, usually rectangular; (3) constant
channel bottom slope, often assumed to be zero; (4) the friction slope term is
linearized with respect to velocity and depth; (5) no lateral inflow; and (6) the
routed flood wave has a simple shape that is amenable to an analytical expres-
sion. These simplifications usually invoke severe limitations on the conditions
for which the solution is valid. The applicability of a particular linearized
model is limited by the assumptions in its derivation. The complete linearized
model, Harley (1967), is the least restricted, although it is not appropriate
when backwater effects exist due to the presence of tides, significant lateral
inflows, dams, bridges, or cross-sectional irreguiarities.

14.4.1 Classical wave models

Neglecting lateral inflow, frictional resistance and nonlinear terms ¥3A4/dx and
V 3V/dx in equations (14.1) and (14.2) respectively, the following classical
linear wave equations may be obtained:

v v 3%h 3%h
ar =~ %a ad Fr=eDo (14.9)

where D is the average depth. The analytical solutions of equations (14.4)
have the following form (Abbott, 1966):

V =Ci(x - /gDt) + Cs(x + jgDt) (14.5)
where C{ and Cj are functions determined by initial flow conditions and the
boundary conditions.

Also, by assuming a rectangular cross-section, zero bottom slope, linearized
resistance, and neglecting the ¥ 3¥/dx term, the following equation may be ob-

tained after combining the resulting simplified forms of equations (14.1) and
(14.2) and eliminating A;

?_Z.If—ﬂ+ '.a_V
axt ot &Y%

in which G4 is a constant depending on the linearized resistance term. Equation

(14.6)
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(14.6) is in the form of the telegraph-equation which has been extensively
studied (Dronkers, 1964).

14.4.2 Simple impuise response models

Linear systems theory has been used to develop routing techniques (Dooge,
1973). In this approach the routing model is assumed to be composed of linear
reservoirs connected by linear channels. According to linear systems theory,
.any linear system is completely and uniquely characterized by its unit impulse
response. By knowing the unit impulse response all possible system outputs
may be determined for all possible inputs. The input—output relationship is
defined by the convolution integral:

t
o) = S I(O)H(t - r')dr’ (14.7)
1]
in which O(t) is the routed flow, /(¢) is the inflow, and H(t — ') is the unit

impulse response. The unit impulse response for a distributed linear reservoir
was given by Maddaus (1969) as:

1 X e t—-mr'

Hx0=5 2 o 7%
where N is the number of linear elements, I'( ) is the gamma function, K is
the characteristic linear reservoir time constant, and 7 is a time constant.
The parameters, k and 7, are obtained by a fitting procedure described by
Maddaus. A similar unit-response approach for routing through a single linear
reservoir was reported by Sauer (1973). This approach is analogous to the unit

hydrograph used by hydrologists to compute rainfall runoff. Also, it is related
to the lag methods.

-(t-mr')/K m-1
( ) ot>mt' (14.8)

14.4.3 Complete linearized models

Linearized models of the complete Saint-Venant equations were developed by
Lighthill and Whitham (1955) and Harley (1967). If equations (14.1) and
(14.2) are rewritten for a unit-width channel and in terms of unit discharge
(g’') and depth (y), and then combined and linearized about a reference flow
velocity (Vo = g4/yo), the following linearized equation is obtained:

2 anl ¥ 62qa alq/

aq’ So dq’
3-V - = - 20949 .
(gyo—- Vo ax’ 0 9t 3t 3gSo +2g (14.9)

agx Vo ot

in which So is the channel bottom slope. Harley er al. (1970) obtained the
following unit response function for equation (14.9):

H(x,t) = e~ 5(t - x/C1) + h' (x/C1 — x/C2)e™* " I[2h'm ') /m’  (14.10)
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where:
Ci = Vo+g¥ (14.11)
C; =Vo— &) (14.12) ~
F =Vo/lgre . (14.13)
P =So2 - F)/[2yo(F* + F)] (14.14)
r o =SoVo(2 + F?)/Q2yoF?) (14.15)
s = S0/(2y0) (14.16)
h' = SoVol(4 — F?)(1 — F*)] /*/(4yeF?) (14.17)
m' = [(t=x/C)(t—x/C2)]'? (14.18)

and I[ ] is a first-order Bessel function of the first kind and 4 is the delta
function. This model is similar to the diffusion analogy model developed by
Hayami (Chow, 1959); however, it does not over-attenuate the flood wave as
much as the simpler diffusion analogy model. The accuracy of the model is
very dependent on the reference flow.

14.4.4 Multiple linearized models

Keefer and McQuivey (1974) presented an improved method for linearized
models in which they introduced a multiple linearization technique for both
the complete linearized model of Harley and the diffusion analogy model of
Hayami (Chow, 1959); they concluded the latter was more practical.

14.5 HYDROLOGICAL MODELS

Significant river improvement projects in the early 1900s provided the impetus
for development of an array of simplified flood routing methods. These have
been termed hydrological models. They are based on the conservation of mass
equation (14.1) written in the following form:

I- O =AS/At (14.19)

in which AS is the change in storage within the reach during a At time incre-
ment; the storage (S) is assumed to be related to inflow (/) and/or outflow
(0), i.e.,

S=K[XI+ (1 - X)O] (14.20)

in which K is a storage constant with dimensions of time (seconds), and X is
a weighting coefficient, 0 < X < 1. All hydrological models are limited to .
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applications where the depth—discharge relation is single-valued. Thus
backwater effects from tides, significant tributary inflow, dams or bridges are
not considered by these models, nor are they well-suited for very mild sloping
waterways where looped depth-discharge ratings may exist. Most
hydrological models are also limited to applications where observed
inflow—outflow hydrographs exist. When using the observed hydrographs to
calibrate the routing coefficients, variations in flood wave shapes within the
observed data set are not considered, and only the average wave shape is
reflected in the fitted routing coefficients. Generally, the hydrological models
have two parameters which can be calibrated to effectively reproduce the flood
wave speed and its attenuated peak.

14.5.1 Storage routing models

Storage routing models attributed to Puls (1928) and Goodrich (1931) were.
developed by assuming X in equation (14.20) to be zero, i.e. storage is depend-
ent only on outflow. Expressing equation (14.19) in centred finite difference
form, the following reservoir routing model is obtained:

Lh+lh O1+0, 5 -S5

14.21
2 2 At ( )
which can be rearranged as:

25; 28,

—+O:=L+L+—-0 14.22

Af 2 1 2 At 1 ( )

which can be solved step-by-step for the left-hand side since O, and S, are
known at time r=0. An S, = f(0) relationship obtained from observed
inflow—outflow hydrographs allows the outflow (0>) to be determined.

14.5.2 Muskingum model

If equation (14.20) with non-zero values for K and X is used for the storage
relationship and this is substituted in equation (14.21), the following is
obtained for computing O.

02=C|[2+C2[|+C301+C4 (14.23)

where:
Co=K-KX + At)2 (14.24)
Ci=—-(KX- At/2)/Co (14.25)

C: = (KX + Atf2)/Co (14.26)
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Cs =(K-KX - At/2)/Co (14.27)

Cs=0.5(q1 + q2) Ax At/Co (14.28)

Equation (14.23), which has been expanded to include the effects of lateral
inflow (q) along the Ax routing reach, is the widely used Muskingum routing
model first developed by McCarthy (1935). The parzmeters K and X are deter-
mined from observed inflow—outflow hydrographs using any of the following
techniques (Singh and McCann, 1980): (1) least-squares or its equivalent, the
graphical method; (2) method of moments; (3) method of cumulants; and (4)
direct optimization method. Among the many descriptions and variations of
the Muskingum model are: Linsley et ai. (1949); Nash (1959); Diskin (1967),
Strupczewski and Kundzewicz (1980); and Dooge et al. (1982).

14.5.3 Muskingum—Cunge model

A significant improvement of the Muskingum model was developed by Cunge
(1969). Cunge derived equation (14.23) using the assumption of a single-valued
depth—discharge relation, the classical kinematic wave equation (see equation
(14.43)), and applying a four-point implicit finite difference approximation
technique. Equation (14.23) remains the same, but the following expressions
for K and X are determined:

X=0.5[1-gé/(cSo Ax)] (14.30)
where ¢ =dQ/dA (14.31)

in which c is the kinematic wave speed corresponding to a unit-width reference
discharge g6, Ax is the reach length and So is the channel bottom slope. Equa-
tion (14.31) may be expressed in an alternative form, i.e.:

¢ =1.27858/(q4 **n°*®) (14.32)
where: B=5/3-2/3 %% dB/dy (14.33)
0

in which Ao is the cross-sectional area corresponding to the total reference
discharge (Qo), Bo is the channel width corresponding to Qo, y is the depth of
flow, and the Manning equation is used to relate friction, depth and velocity.
Depending on the cross-section shape, 8 may have vaiues in the range,
1 < B < 5/3. Selection of the appropriate time step (Af) is given by;

At=T,/M (14.34)

where T, is the time of rise of the inflow hydrograph and M is an integer whose
value ranges from 5 to 20, depending on the extent of variation in the inflow
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* hydrograph. The sclection of Ax affects the accuracy of the soldtion. It is
related to Af and is limited by the following inequality (Ponce, 1981):

Ax £ 0.5[cAt + q6/(¢So)] (14.35)

While the Muskingum—Cunge model does not require observed inflow—
outflow hydrographs to establish the routing coefficients as required in the
Muskingum model, best results are obtained if the wave speed (c) is determin-
ed from actual flow data. Also, the model is restricted to applications where
backwater is not significant and channel rating curves do not have significant
loops.

The Muskingum—Cunge model (Miller and Cunge, 1975; Weinmann and
Laurenson, 1979) has created much interest in recent years as a highly versatile
simplified routing model. Koussis (1978) and Ponce and Yevjevich (1978) have
extended the model by using variable parameters ¢ and B for temporally vary-
ing Q. Another model similar to the Cunge modification of the Muskingum
model has been proposed by Koussis (1980).

14.5.4 Kalinin—Miljukov model

Another variation of the Muskingum model is the Kalinin—Miljukov model

(Miller and Cunge, 1975), developed in 1958 in the USSR. This model has the
following form:

O:= 01 +(I1 - O1)Ky + (I - K, (14.36)

where: Ky =1 —e carax (14.37)
Ky =1 - KiAx/(cAt) (14.38)

Ax = O/Sy(Ay/A0) (14.39)

in which Ay/AO is the slope of the depth—outflow rating curve. Equation
(14.36) is identical to the Muskingum model if in the latter, X = Ax/c and
X=0.

Another variation of the Muskingum model is the SSARR routing model
(Rockwood, 1958) which Miller and Cunge (1975) show is similar to the
Muskingum model with X assumed to be zero.

14.5.5 Lag and route model

Another hydrological storage routing model is the Lag and K model (Linsley
et al., 1949). First, the inflow is lagged and then the outflow (O;) at time (r2)
is determined by substituting the relation S; — S; = K(O; — Oy) in equation
(14.21) and solving for O, i.e.:

Or= (L1 + L — O\(1 = 2K/AD)] /(1 + 2K/At) (14.40)



446 D. L. Fread

The extent of lag and the K parameter may be constants, or they can be func-
tions of the inflow and outflow, respectively. Another lag and route model has
been proposed by Quick and Pipes (1975).

14.6 SIMPLIFIED HYDRAULIC MODELS

The advent of computers made possible the development of another category
of routing models based on equation (14.1) and various simplifications of
equation (14.2). These models are classified as kinematic, diffusion, or quasi-
steady depending on the terms retained in equation (14.2). The range of
applicability of the kinematic and diffusion models has recently been treated
by Ponce et al. (1978) who utilized a linear stability analysis of the finite
difference form of the Saint-Venant equations. They compared wave attenua-
tion factors and celerities and concluded that bottom slope and wave shape
determine the range of their suitable applicability. In general, the steeper
slopes associated with overland flow or steep streams with slow-rising floods
are amenable to the use of kinematic models. The diffusion models have a
wider range of applicability and can accommodate milder bottom slopes.
However, there still remain many practical combinations of mild sloping
channels and flood wave shapes that are not suitable for either diffusion or

kinematic approximations and should be treated with the complete Saint-
Venant equations.

14.6.1 Kinematic model

Interest in the kinematic model was initiated by Lighthill and Whitham (1955).
There have been many forms of the kinematic model proposed; however, the
basic assumption used in their derivation is that equation (14.2) can be
simplified and expressed in the following form:

S;—So=0 (14.41)

in which dA/dx = 3y/dx — So. Equation (14.41) implies that the momentum of
the unsteady flow is assumed to be the same as that of steady uniform flow
as described by the Chezy or Manning equation or a similar expression in
which discharge is a single-valued function of depth, i.e. 34/3Q =dA/dy = 1/c
in which Q is discharge (flow) and c is the kinematic wave speed from equation
(14.31) or (14.32). Also, since

dA d4A aQ

"0 (14.42)

and Q = AV, equation (14.1) can be written as the classical kinematic equa-
tion, i.e.

aQ . aQ
9, .90 _ 14.43
at T a0 (14.43)
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which can be solved by explicit or implicit finite difference methods, the latter
being more efficient in most river applicaticns. The kinematic wave model is
limited to applications where single-valued depth—discharge ratings exist, and
where backwater effects are insignificant, since in kinematic models flow
disturbances can only propagate in the downstream direction. Also, the
kinematic model modifies the flood wave through attenuation and dispersion
via the errors inherent in the finite difference solution technique. The phenom-
enon of numerical damping merely mimics the actual physical damping of a
flood wave since there is no mechanism in the basic kinematic equation to
cause such damping. The kinematic wave models are very popular in applica-
tions to overland flow routing of precipitation runoff, e.g., Wooding (1965)
and Woolhiser and Liggett (1967). Kinematic wave models have been used in
channel routing by Harley et al. (1970) in the MIT catchment model and in
the Hydrocomp model (Linsley, 1971).

14.6.2 Diffusion model

Another type of simplified hydraulic model is the diffusion model or zero-
inertia model. The latter designation is derived from the basic assumption of
this model that the inertia terms (first two) in equation (14.2) are insignificant.
Thus, equation (14.2) takes the following form:

Sy +0hjax=0 (14.44)

Equation (14.44) may be expressed in terms of channel conveyance X. which
is a single-valued function of elevation (A), i.e.,

Q= —Ke(hef | he ) (| e )1 (14.45)

where h,=0h/dx. Equation (14.45) allows for upstream directed flows.
Brakensiek (1965) solved equations (14.1) and (14.45) with a four-point
centred implicit finite difference solution technique for reasons of computa-
tional efficiency. Harder and Armacost (1966) used an explicit finite difference
solution technique for the diffusion routing model used by the Army Corps of
Engineers (Harrison and Bueltel, 1973) on the Missouri River. This modeli is
restricted to small time steps due to the numerical stability constraint given by:

At < BS$* Ax?/(K. + So Ax AK./Ah) (14.46)

in which B is the wetted top width of the channel. The nonlinear diffusion
wave model is a significant improvement over the kinematic model because of
the inclusion in equation (14.44) of the water surface slope term (3h/dx) of
equation (14.1). This term allows the diffusion model to describe the attenua-
tion (diffusion effect) of the flood wave. It also allows the specification of a
boundary condition at the downstream extremity of the routing reach to
account for backwater effects. It does not use the intertial terms (first two
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terms) of equation (14.2) and, therefore, is limited to slow to moderately rising
flood waves in channels of rather uniform geometry. Since inclusion of the
inertial terms in an implicit (finite difference) solution of equation (14.44) in
conjunction with equation (14.1) results in only a small increase in computa-
tional effort, the resulting dynamic model is generally preferred over the
diffusion mode! due to the wider range of applicability of the dynamic wave
model.

14.6.3 Quasi-steady model

A third type of simplified hydraulic model is the quasi-steady hydraulic model
in which equation (14.1) is used along with equation (14.2) with all its terms
except dV//at. This simplification saves very little in computational effort and
introduces more error than the simpler diffusion model. The quasi-steady
model has been infrequently used, and its further use is not recommended.

14.7 COMPLETE HYDRAULIC MODELS

After the advent of high-speed computers, Stoker (1953) and Isaacson et al.
(1954) first attempted to use the complete Saint-Venant equations for flood
routing on the Ohio River. Since then, much effort has been expended in the
development of the complete (dynamic wave) models. They are categorized
according to the method of solut.on, i.e. direct or characteristic methods. In
the direct methods finite difference approximations for the partial derivatives
are substituted directly into equations (14.1) and (14.2), and solutions are
obtained for incremental times (At) and distances (Ax) along the waterway. In
the method of characteristics, the partial differential equations (14.1) and
(14.2) are first transformed into an equivalent set of four ordinary differential
equations which are then approximated with finite differences to obtain solu-
tions. Dynamic models can be classified further as either explicit or implicit,
depending on the type of finite difference scheme used in the solution. Explicit
schemes transform the differential equations into a set of easily solved
algebraic equations. However, implicit schemes transform the differential
equations into a set of algebraic equations which must be solved simul-
taneously; the set of simuitaneous equations may be either linear or nonlinear,
the latter requiring an iterative solution procedure.

14.7.1 Characteristic models

Several methods of characteristic models were developed in the 1960s. Most
were explicit, e.g. Liggett and Woolhiser (1967), Streeter and Wylie (1967),
and Ellis (1970). Implicit characteristic models were reported by Amein
(1966) and Wylie (1970). Characteristic models can have a curvilinear grid or
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a rectangular grid in the x—¢ solution domain (Abbott, 1966). The former is
not practical for application in natural waterways of irregular geometry. The
latter, known as the Hartree method, requires interpolation formulae meshed
within the finite difference solution procedure. These restrictions have tended
to discourage the application of characteristic models for flood routing. The
characteristic models for prismatic channels are based on the following four
total differential equations:

dx/dt - V- gAJB =0 | (14.47)
dV/dt + [gB/A dy/dt + g(Sy — So) + q(V — v:)JA — gBJAq/B=0 (14.48)
dx/dt - V+ gA/B=0 (14.49)
dV/dt - ;gB/A dy/dt + g(Sy ~ So) + q(V — vx)/A + ;gBJAg/B=0 (14.50)

Equations (14.47)—(14.50) are equivalent to the Saint-Venant partial differ-
ential equations (14.1) and (14.2) except that lateral inflow (g) has been
included. The term v, is the velocity of the lateral inflow in the x-direction
along the axis of the waterway, A4 is cross-sectional area, B is cross-sectional
top width, and y is depth.

14.7.2 Explicit models

Explicit finite difference models advance the solution of the Saint-Venant
equations point by point along one time line in the x—¢ solution domain until
all the unknowns associated with that time line have been evaluated. Then, the
solution is advanced to the next time line. In an explicit scheme the spatial
derivatives and non-derivative terms are evaluated on the time line where the
values of all variables are known. Only the time derivatives contain unknowns.
Thus, in an explicit model, two linear algebraic equations are generated from
the two Saint-Venant equations at each net point (node). Since the two equa-
tions can be soived directly for the unknowns, the equations are described as
‘explicit’.

The development of explicit models began with the pioneering work of
Stoker (1953). Among those who have reported on explicit models are Liggett
and Woolhiser (1967), Martin and DeFazio (1969), and Strelkoff (1970).
Dronkers (1969), Balloffet (1969) and Kamphuis (1970) applied explicit models
to analyze tidal movement in estuaries. Garrison et al. (1969) and Johnson
(1974) applied the explicit models for flood routing in rivers and reservoirs.
Many variations of the explicit method have been developed, each based on
a type of explicit finite difference scheme, e.g. the Stoker scheme, the diffusion
scheme, and the leapfrog scheme. Descriptions and analyses of several explicit
finite difference schemes have been given by Liggett and Cunge (1975).
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In explicit models, equations (14.1) and (14.2) are usually expressed in the
following form to enable an explicit solution of their finite difference
approximations:

av A dy

— 4+ V—4+Br=-¢g=0 .
Aax+ o T BTy 4 (14.51)
124 av ay (V-vi)g
— = - NI SARNRLY. Sy .
3 + ax-#g(ax So+Sf) a (14.52)

in which Bris the wetted top width of the total cross-sectional area (active and
inactive or off-channel storage areas). Also, the effect of lateral inflow (gq) is
included in equations (14.51) and (14.52).

Explicit models, although relatively simple compared to implicit models,
have a restriction in the size of the computational time step (A¢) in order to
achieve numerical stability. In the Stoker scheme the maximum permissible
time step (At) is given by the following inequality (Garrison et al., 1969):

At < Ax/[V + [gA/B + gn*| V| Ax/(ciR*?)] (14.53)

in which n is the Manning roughness coefficient, ¢, = 1.0 in metric units and
¢y = 2.21 in English units, and R is the hydraulic radius. The first two terms
in the denominator are associated with the well-known Courant condition for
stability of explicit schemes in frictionless flow. The third term accounts for
the effects of friction. This inequality, or some slight modification thereof, is
representative of all explicit models. An inspection of equation (14.53)
indicates that the computational time step is substantially reduced as the
hydraulic depth (A4/B) increaseés. Thus, in large rivers it is not uncommon for
time steps on the order of a few minutes or even seconds to be required for
numerical stability even though the flood wave may be very gradual, having
a duration in the order of weeks. Such small time steps cause the explicit
method to be very inefficient in the use of computer time. Another disadvan-
tage of explicit schemes is the requirement of equal Ax distance steps.

14.7.3 Implicit models

Implicit finite difference schemes advance the solution of the Saint-Venant
equations from one time line to the next simulitaneously for all points along
the time line (the x-axis of the waterway) in the x—¢ solution domain of Figure
14.1. Thus, in an implicit model, a system of 2N algebraic equations is
generated when finite difference approximations of the Saint-Venant equations
are applied simultaneously to the N cross-sections along the x-axis. The system
of algebraic equations so generated may be either linear or nonlinear, depen-
ding on the way non-derivative terms are approximated.
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Figure 14.1 Discrete x~t solution domain

Implicit models were developed because of the limitations on the size of the
time step required for numerical stability of explicit models. The use of
implicit models was suggested by Isaacson ez al. (1956) and first appeared in
the literature in the early 1960s with the work of Preissmann (1961) and
Vasiliev et al. (1965). Later, Abbott and Ionescu (1967), Baltzer and Lai
(1968), Dronkers (1969), Amein and Fang (1970), Kamphuis (1970), Contrac-
tor and Wiggert (1972), Quinn and Wylie (1972), Fread (1973), Chaudhry and
Contractor (1973), Greco and Panattoni (1975), Amein and Chu (1975), Chen
and Simons (1975), Bennett (1975), and Fread (1976), were among those repor-
ting their research with implicit methods.

Analysis of the numerical stability and accuracy of various implicit schemes
has been reported by Cunge (1966), Abbott and Ionescu (1967), Dronkers
(1969), Gunaratnam and Perkins (1970), Fread (1974), Liggett and Cunge
(1975), and Ponce and Simons (1977). Within the simplifications required in
making the numerical stability analyses, the various implicit methods were
found to be unconditionally linearly stable, i.e. the simplified linearized
versions of the Saint-Venant equations were numerically stable independent of
the size of the time or distance steps. However, Chaudhry and Contractor
(1973), Fread (1974) and Cunge (1975a) found that instability could occur for
the implicit schemes if the time steps were too large and the x-derivative terms
were not sufficiently weighted towards the future time line when modelling
rapidly varying transients. Also, time steps are restricted in size for reasons of
accuracy; At is found to depend upon the shape of the wave, the Courant con-
dition, the Ax step size, and the type of implicit scheme used. Nonlinearities
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due to irregular cross-sections having widths that vary ‘rapidly in the
x-direction along the waterway or in the vertical direction can also cause
numerical instabilities.

Implicit models are computationally more complex than explicit models.
Depending on the type of implicit scheme (linear or nonlinear), the number of
computations during a time step are several times greater than that of an
explicit scheme. This extra computational requirement is very much greater if
the method of solving the system of simultaneous equations is not efficient by
taking advantage of the banded-structure of the coefficient matrix of the
system of equations. Efficient solution techniques include the following: (1) a
compact penta-diagonal elimination method described by Fread (1971) which
makes use of the banded structure of the coefficient matrix of the system of
equations, or (2) the double-sweep method developed in Europe (Liggett and
Cunge, 1975). If the implicit scheme is linear, only one solution of the system
of equations is required at each time step. However, if the implicit scheme is
nonlinear, an iterative solution is necessary, and this requires one or more
solutions of the system of equations at each time step. The use of the
Newton—Raphson iterative method for nonlinear systems of equations (Amein
and Fang, 1970) provides a very efficient solution if selected convergence
criteria are practical. If the Newton—-Raphson method is applied only once, the
nonlinear implicit model is essentially equivalent to the linearized implicit
models with respect to computational effort and performance.

Nonlinear implicit methods can be based on the conservation form of the
Saint-Venant equations including lateral flow g (inflow is positive, outflow is
negative) and off-channel (inactive flow) storage area Ao, with dependent
variables discharge (Q) and water elevation (), i.e.,

00 A+ A _

= 14.54
ax at 0 ( )
9, HQYA) 4 (3h - 14.55
at+ I +gA ax+Sf +L=0 (14.55)

where L = — qv, for lateral inflow, L = —qQ/A for bulk lateral outflow, and
L = —qQ/(2A) for seepage lateral outflow. An important advantage of equa-
tions (14.54) and (14.55) when they are expressed in finite difference form is
their ability to accurately describe steep-fronted waves in waterways of non-
prismatic geometry.

Linear implicit methods often utilize an expanded form of equations (14.54)
and (14.55) such as that used by Chen and Simons (1975), i.e.

a_Q+BTal

% Y -g=0 (14.56)
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30 , Q40 0O*[.ay [94 ay )
99,9099 Q" | 0y (34 D _s L=0 (14.57
o TP aax T ar |Bant G | TGS ) (1457

in which Br is the total top width (active and inactive), (04 /dx) is the variation
of A with respect to x with the depth () held constant, and Sy is expanded
in a Taylor series in order to linearize this highly nonlinear term, i.e.,

S}+At — Sf" + (an/aQ)l(QH-At _ Qt) + (asf/ay){(ylfdl _yf) (14.58)

in which the superscripts (¢ and ¢ + At) indicate at which time line the term is
evaluated. In linear methods the accuracy of the solution is quite dependent
on the size of At if the flow is rapidly changing with time due to the assumption
of linearity of flow throughout a time step.

Implicit schemes have generally been four-point, i.e., the conservation of
mass and momentum equations have been applied to the flow existing between
two adjacent cross-sections. The weighted four-point scheme allows a conve-
nient flexibility in the placement of x-derivative and non-derivative terms
between two adjacent time lines in the x—¢ solution domain. The weighting
factor must be equal to or greater than 1/2 to provide unconditional linear
stability with respect to time step size, and the accuracy of the scheme generally
decreases as the weighting factor approaches unity, i.e., when the terms are
expressed entirely at the forward time line. A few six-point schemes have been
proposed, e.g. Abbott and Ionescu (1967) and Vasiliev et al. (1965), but they
have the disadvantage of requiring regular Ax intervals whereas the four-point
schemes allow variable Ax spacing. Also, the six-point schemes treat the
boundary conditions in a more complicated manner than the four-point
schemes.

14.7.4 Finite element models

The method of finite elements (Gray et al., 1977) can also be applied to the
complete Saint-Venant equations, e.g. Cooley and Moin (1976). Although this
method of solution is popular in two-dimensional unsteady flow models, it
does not appear to offer any advantages over the four-point nonlinear implicit
models for the Saint-Venant one-dimensional equations of unsteady flow.
Also, the mathematical basis for finite element solution schemes is not as easily
understood as the finite difference approach. It seems that the personal
preference of the model developer is the determining factor in selection of
finite element or finite difference solution methods for the Saint-Venant
equations.

14.7.5 Two-dimensional models

The unsteady flow equations when formulated in the x-direction as in equa-
tions (14.1) and (14.2), and also in the horizontal direction perpendicular to
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the x-axis, become two-dimensional equations which form the basis for an
array of models summarized by Hinwood and Wallis (1975a,b) and Abbott
(1976), Abbott and Cunge (1975), Grupert (1976), and the simplified models
described by Cunge (1975b) and Vicens et al. (1975). These models are beyond
the intended scope and have been omitted from consideration herein. They are
considerably more expensive to calibrate and execute on high-speed computers
than the one-dimensional models. They are often used as an alternative
modelling approach whenever a large amount of flow information is desired
in complex unsteady flows associated with oceans and bays and water quality
prediction therein and in estuarial networks.

14.8 MODEL SELECTION

Channel routing has been an important type of engineering analysis, and this
importance, along with its inherent complexity, have resulted in the prolifera-
tion of routing models. The literature abounds with a wide spectrum of usable
and reasonably accurate mathematical models for channel routing when each
is used within the bounds of its limitations.

The selection of a channel routing model for a particular application is
influenced by the relative importance one places on the following factors:
(1) model accuracy; (2) the accuracy required in the application; (3) the type
and availability of required data; (4) the available computational facilities; (5)
the computational costs; (6) the extent of flood wave information desired;
(7) one’s familiarity with a given model; (8) the extent of documentation,
range of applicability, and availability of a ‘canned’ or packaged routing
model; (9) the complexity of the mathematical formulation if the routing
model is to be totally developed from ‘scratch’ (coded for computer); and (10)
one’s capability and time available to develop a particular type of routing
model. Taking all factors into consideration, and recognizing that each
application may change the relative importance of each factor, it is apparent
that there is no universally superior routing model.

In the absence of significant backwater effects, the hydrological storage
routing models offer the advantage of simplicity. They hydrological models
have two parameters which can be calibrated to effectively reproduce the
simple characterisics of a flood wave such as its celerity and crest attenuation.
The accuracy considerations restrict the hydrological and kinematic models to
applications where the depth—discharge relation is essentially single-valued.
Following the analysis of Ponce and Simons (1977), and Ponce et al. (1978)
approximate criteria for their acceptable range of application can be formu-
lated. For kinematic-type models including the Muskingum model, the follow-
ing criterion will restrict routing errors to less than about 5 per cent:

T,54/(g4°2n*?) > 0.014 (14.59)
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A similar criterion for diffusion-type models including the Mus kingum—Cunge
model is:

T.So "% /(gén)°3 > 0.0003 (14.60)

in which T is time of rise (hours) of the inflow hydrograph, So is the channel
slope, g6 is a unit-width reference discharge, and » is the Manning coefficient.

Inspection of equations (14.59) and (14.60) reveals the importance of the
parameters, 7, and So. Also it is apparent that the diffusion models are
applicable for a wider range of bottom slopes and hydrographs than the
kinematic models. In instances of a gently sloping channel and rapidly rising
flood wave, when the combination of So and 7, becomes small enough that
equation (14.60) cannot be satisfied, the complete hydraulic (dynamic wave)
models are required. The simpie Muskingum—Cunge model can be used effect-
ively in many applications where equation (14.60) is satisfied and backwater
effects are not significant. However, as the trend continues for increasing
computational speed and storage capabilities of computers at decreasing costs,
accessibility to inexpensive computational resources should increase the
feasibility of using the dynamic wave models for a wider range of applications.

Among the models reviewed, the hydraulic models based on the complete
Saint-Venant equations have the capability to correctly simulate the widest
spectrum of wave types and waterway characteristics. Since the dynamic wave
models contain only one calibration parameter (the roughness coefficient),
they are very amenable to the calibration process. Also, since the roughness
coefficient can be estimated with some degree of accuracy from inspection of
waterways or, better still, from minimal depth—discharge data, any of the
hydraulic flood routing models or the Muskingum—Cunge model can be used
when there is a scarcity of pertinent inflow—outflow observations such as in the
case of ungauged rivers or proposed man-made changes to waterways. The
hydraulic (dynamic wave) models are preferred over ail other models when: (1)
the backwater effect is important due to tides, significant tributary inflows,
dams, and /or bridges; and (2) the upstream propagation of waves can occur
from large tides and storm surges or very large tributary inflows. The implicit
dynamic wave model is the most efficient and versatile, although the most com-
plex, of the complete hydraulic models. A detailed description of such a model
follows.

149 STRUCTURE OF THE DYNAMIC WAVE MODEL (FLDWAY)

The FLDWAYV model is a synthesis of two widely used models, DWOPER
(Fread, 1978) and DAMBRK (Fread, 1980). In addition, FLDWAYV has signi-
ficant modelling capabilities not available in either of the other models.
FLDWAV is a generalized dynamic wave model for one-dimensional unsteady
flows in a single or branched waterway. It is based on an implicit (four-point,



456 D. L. Fread

nonlinear) finite difference solution of the Saint-Venant equation. The follow-
ing special features are included in FLDWAV: variable Af and Ax computa-
tional intervals; irregular cross-sectional geometry; off-channel storage;
roughness coefficients which vary with discharge or water surface elevation,
and distance along the waterway; capability to generate linearly interpolated
cross-sections and roughness coeficients between input cross-sections;
automatic computation of initial steady flow and water elevations at all cross-
sections along the waterway; external boundaries of discharge or water surface
elevation time series (hydrographs), a single-valued or looped depth—discharge
relation (tabular or computed); time-dependent lateral inflows (outflows);
internal boundaries which enable the treatment of time-dependent dam
failures, spillway flows, gate controls, bridge flows, bridge-embankment over-
topping flow; short-circuiting of floodplain flow in a valley with a meandering
river; levee failure and /or overtopping; a special computational technique to
provide numerical stability when treating flows which change from super-
critical to subcritical or, conversely, with time and distance along the water-
way; and an automatic calibration technique for determining the variable
roughness coefficient by using observed hydrographs along the waterway.

FLDWAYV is coded in FORTRAN IV and the computer program is of
modular design with each subroutine requiring less than 64,000 bytes of
storage. Overall program storage requirement is approximately 256,000 bytes.
Program array sizes are variable with the size of each array set internally via
the input parameters used to describe the particular uns:eady flow application
for which the model is being used. Input data to the program is free or fixed-
format. Program output is user-selective and consists of tabular and/or
graphical displays.

14.10 BASIC ALGORITHM

FLDWALV is based on an implicit finite difference solution of the conservation
form of the Saint-Venant equations of unsteady flow. In their conservation
form, the equations consist of the conservation of mass equation, i.e.,

Q_Q_+6(A +Ao)_

=0 14.61
ax at ( )

and the conservation of momentum equation, i.e.,

2
29, —%xL-Ir-gA(gh+Sf+Se)+L+WfB 0 (1462

where: s, =-1019 —J— (14.63)

2.21A%R%Y3 ™
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Se = IQLQM)_Z (14.64)
2g dx

Wy=Cu|V,| Vs (14.65)

in which x is distance along the longitudinal axis of the waterway, ¢ is time,
Q is discharge, A is active cross-sectional area, Ao is inactive (off-channel
storage) cross-sectional area, q is lateral inflow (positive) or outflow (negative),
g is the gravity acceleration constant, # is water surface elevation, B is wetted
top width of cross-section, L is the momentum effect of lateral inflow, Sy is
friction slope computed from Manning’s equation, # is the Manning n, R is
the hydraulic radius approximated by (4/B), K. is the channel conveyance
factor, S. is the local loss slope, K, is an expansion (negative) or contraction
(positive) coefficient, W, is the wind term, C. is non-dimensional wind
coefficient, V, is the velocity of the wind ( V) relative to the velocity of the
channel flow where the acute angle between the wind direction and channel
flow direction is w and V. is (=) if aiding the flow.

In an implicit finite difference solution of equations (14.61) and (14.62), the
continuous x—¢ solution domain in which solutions of 4 and Q are sought is
represented by a rectangular net of discrete points as shown in Figure 14.1.
The net points (nodes) may be at equal or unequal intervals of A¢ and Ax along
the ¢ and x axes, respectively. Each node is identified by a subscript (/) which
designates the x position and a superscript (j) for the time line. A four-point
weighted, implicit difference approximation is used to transform the nonlinear
partial differential equations of Saint-Venant into nonlinear algebraic equa-
tions. The four-point weighted difference approximations are:

K

5 = K+ K- K - KLL)/@ Ar) (14.66)
K =0/Axi(KI* = KI* Y)Y+ (1 -0)/axi(K/, - K! 14.67
ax - LA P i )+( )/ X,( i+1 1) ( . )
K =0.50(K/""' + K/ +0.501 - 0)(K] + K%, ) (14.68)

where K is a dummy parameter representing any variable in the above differen-
tial equations, 6 is a weighting factor varying from 0.5 to 1, / is a subscript
denoting the sequence number of the cross-section or Ax reach, and j is a
superscript denoting the sequence number of the time line in the x—¢ solution
domain. A 6 value of 0.5 is known as the ‘box’ scheme while 6 = 1 is the ‘fully
implicit’ scheme. To insure unconditional linear numerical stability and pro-
vide good accuracy, 6 values nearer to 0.5 are recommended (Fread, 1974). Ac-
curacy decreases as 6 departs from 0.5 and approaches 1.0. This effect becomes
more pronounced as the time step size increases. FLDWAY allows 6 to be an
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input parameter. A value of 0.55 to 0.60 is often used to minimize loss of ac-
curacy while avoiding weak or pseudo-instability which sometimes results
when 6 of 0.5 is used.

Substitution of the finite difference approximations defined by equations
(14.66)—(14.68) into equations (14.61) and (14.62) for the derivatives and non-
derivative terms and multiplying through by Ax; yields the following di{ference
equations:
0Qi! - QI - G/ Ax) +(1=6)(Qf,, — Of ~ 4/ Ax)

+0.5 Axi/AU(A + Ao)/ T + (A + Ao)/S [ — (A + Ao)!
—(A+A0),1=0 (14.69)
0.5 Axy/AP(QIT+ Qi - 0l - 01, ) +01(QYAY I} - (Q¥A)™
+ gAML — it A xS + AxiSL

+Ax(L+ W BT+ (1= 0) (@AY, ~ (Q*/4)

i+l
v gAi(h,, — hi + AxS), + AxiSL) + Axi(L + WiB)]1 =0

(14.70)

where: A =0.5(Ai+ Aiv1) (14.71)
Bi =0.5(Bi+ Bi+1) (14.72)

S, = 2—"-;1—;3711?—% =|0i| Ok, (14.73)

Oi =0.5(Qi+ Qis1) (14.74)

Ri =AiBi (14.75)

K., =0.5(Ke, + Keir) (14.76)

S, = Kel(Q/A)H1 — (Q/A)1/(28 Axi) (14.77)

Wy, = Cw| Vei| Vo, (14.78)

V, =Qi/Ai= Vu, cos @ (14.79)

Li =—(qvx) (lateral inflow) (14.80)

Li =-(GQ/A)i (bulk lateral outflow) (14.81)

Li = —(0.5§0/A) (seepage lateral outflow) (14.82)

The bar (—) above the variables represents the average of the variable over
the reach length (Ax;) between Ero_ss-sgtiogs iand i+ 1. The subscript ()
associated with g, Vx, 4, B, Sy, @, Se, W7, V,, and V. represents the number
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of the reach (Ax:) rather than the cross-section (node) number. Node numbers
commence with | and terminate with N, while reach numbers commence with
1 and terminate with (N - 1).

Equations (14.69) and (14.70) are nonlinear with respect to the unknowns
h and Q at the points i and i + 1 on the j + | time line. All terms associated
with the jth time line are known from either the initial conditions or previous
computations. The initial conditions are values of # and Q at each computa-
tional point (node) along the x-axis for the first time line g=D.

Equations (14.69) and (14.70) are two nonlinear algebraic equations which
cannot be solved in a direct (explicit) manner since there are four unknowns
hand Q, at points i and (i + 1) on the (j + 1) time line and only two equations.
However, if similar equations are formed for each of the (N — 1) Ax reaches
between the upstream and downstream boundaries, a total of (2N — 2) equa-
tions with 2N unknowns results. (N denotes the total number of computa-
tional points or cross-sections.) Then prescribed boundary conditions, one at
the upstream extremity of the waterway and one at the downstream extremity,
provide the additional two equations required for the system to be deter-
minate. The resulting system of 2N nonlinear equations with 2N unknowns is
solved by the'Newton—Raphson method which was first applied by Amein and
Fang (1970) to an implicit nonlinear formulation of the Saint-Venant
equations.

14.10.1 Newton—Raphson method

The Newton—Raphson method is a functional iterative technique to solve a
system of nonlinear equations. The technique is derived from a Taylor series
expansion of the nonlinear function in which all terms of second and higher
order are neglected. The resulting algorithm is:

J'(X*) ax = - f(X") (14.83)

in which X* is a vector quantity, J' is the Jacobian (a coefficient matrix made
up of the partial derivatives evaluated with X* values), f(X*) is the nonlinear
equation evaluated with X* values, and AX is a vector containing the 2N
unknowns. Equation (14.83) represents a system of equations in which the
unknown vector AX is linear. Solution of equation (14.83) for the unknown
A X'is by an appropriate matrix inversion technique such as Gauss elimination.
The A X vector actually represents the difference between an initial estimate of
the true solution and an improved estimate, i.e.

AX=X**1_Xx* (14.84)

in which k is the number of iteration, X* is the initial estimate (guess) and
X**1is the improved estimate. Convergence of the iterative solution is attain-
ed in usually one or two iterations when the AX vector containing the
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unknown discharges (Q/*!, Q/*) and water elevations (A "', h/}) becomes
less than convergence criteria which are specified for each application of
FLDWAV. Typical values are 0.01 feet for convergence of water elevation (ex)
while the convergence for the discharge is specified in ft 3/s according to the
following relation;

eo = enBV (14.85)

in which B and V are the representative channel width and velocity,
respectively.

The convergence process depends on a good first estimate for the vector X*.
A reasonably accurate initial condition of the discharges and water elevations
at ¢ =0 provides the first X k Thereafter, X* first estimate values can be
obtained using extrapolated values from solutions at previous time steps
according to the following algorithm:

XK= X' (X - X )a arjarT! (14.86)

where At/ and Ar/~! are values of time steps between the time lines corres-
ponding to the solution vectors, X/ and X’~!, respectively. The weighting
actor o’ can be specified over the range of zero to unity.

The Jacobian matrix, J' (X*), is composed of elements (s, ) located along
the main-diagonal with two elements in rows 1 and 2N which represent the
upstream and downstream external boundaries, respectively; and all other
rows have four elements which represent the partial derivatives of equations
(14.69) and (14.70) with respect to the four unknowns (Qf*Y, mi*', Qir),
hi*h. Each adjacent pair of rows represent the application of equations
(14.69) and (14.70) to each Ax; reach along the waterway proceeding from the
upstream to the downstream boundary.

Letting C represent equation (14.69) and M represent equation (14.70), their
derivatives can be expressed as follows:

ax  =03C/0Q{*' = -9 (14.87)
ak+1 = 9C/ahI* = (B + Bo){*'0.5 Axi/at! (14.88)
aks2 =03CAQIT!=6 (14.89)
ark+3 =dC/3hIT = (B + Bo)!7'0.5 Axi/At (14.90)

@erk  =0OM[AQIT =0.5 Axi/At) +0{ - 2(Q/A)*!
+8A]" Ax[05/6Q)"! + @5:/00){ "] + Axi(BL/6Q)"")
(14.91)
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Qrrk+r1 =OM[RI™ = O((BQPA?)/*" +0.5¢B! "\ (hi1 )} - hi*!
+Aax;Sit + Ax.S;"f‘) +gA/* [ -1+ Axi(85,/0n){*!
+Axi(3S,/0R){* ] + Axi[(BL/3R)/* " + 0.5(W, dB/dR){* ']}

, (14.92)
@+1ks2=3M[3Q]}!'=0.5 Axi/At! + 6{2(Q/A)/*
+8A{*! Axi[(35//3Q)/ 1!+ (35,/0Q){ ] + AxAAL/3Q)it!
(14.93)
rer ks =0M/oh]! ! =0((- BQ*/A®)/! | +0.58B]} (nit! - A*!
+AXxS[T + AXxSITY) + gAf* (1 + Ax«dS,/on)!; !
+8xi(35,/6R)! t1] AxilL/3R)]} !+ 0.5(W, dB/dh)itl]} (14.94)
where: 35/0Q = 5 (1/Q + 1/7i ARJAQ) (14.95)
35,/0h = 2§,[d”{ dh_3B, d@@"} = ZSrdKjdh 4 06
n 6A4 3B Kc
dB/dh = AB/Ah (14.97)
di/dh =0.5 Af/Ah (14.98)
dK./dh = AK./Ah (14.99)
35/3Q)/*! = [ - K.Q/(g AxA®)]/*! (14.100)
8S,/0Q){!! = [K.Q/(g AxA?)) ]!} (14.101)
3S,/3h)i*! = [K,Q*B/(g AxA®)}/*! (14.102)
@5,/om)f!} = (-K,Q*B/(g axA*)) ;!
(14.103)
aL/3Q =0 (14.104)
(lateral inflow)
dL/dh =0 (14.105)
dL/3Q = —0.5q/4 (14.106)
o (bulk lateral outflow)
dL/dh =0.5GQB/A* (14.107)
dL/dQ = —0.25G/A (14.108)

_ (seepage outflow)
dL/dh =0.25GQB/A*? (14.109)
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In equations (14.87)—(14.94), the subscripts (/ and k) denote the row and
column of the element (a;,x) within the Jacobian matrix. The subscript (/) has
a value of 2 for the first Ax reach and increments by 2 for each successive Ax
reach proceeding from the upstream boundary to downstream boundary. The
subscript (k) has a value of 1 for the first Ax reach and increments by 2 for
each successive Ax reach.

Thus, the Newton—Raphson method generates a system of 2N x 2N linear
equations. The Jacobian or coefficient matrix of the system is composed of the
partial derivative expressions evaluated at the first estimate, X k. The
right-hand side of equation (14.83) is the residual, a vector whose values are
obtained by evaluating equations (14.69) and (14.70) using the X k estimate
values for the unknown discharges and water surface elevations. Solution of

the linear system described by equation (14.83) provides corrections to the first
trial (estimated) values of the unknowns.

14.10.2 Matrix solution

An efficient matrix solution technique is critical to the feasibility of an implicit
model. Equation (14.83) is solved by a special modification of the Gauss
elimination method for solving a system of linear equations. Using matrix
notation, equation (14.83) takes the following form:

[A]X =R (14.110)

in which [A4] = the coefficient matrix with elements a;« and X, R are column
vectors having components x; and r; respectively. The coefficient matrix is
banded with most of the elements being zero except for four elements in each
row along the main diagonal of the matrix. An efficient solution technique was
developed by Fread (1971) in which (1) the computations do not involve any
of the many zero elements, thus reducing the required number of operations
(addition, subtraction, division, multiplication) from (16/3N 3+ 8N+ 14/3N)
to (38N — 19); and (2) stores only the non-zero elements, thus reducing the
storage required for the [A4] matrix from 2N X 2N to 2N X 4, where N is the
total number of cross-sections along the waterway. The compaction of the
original matrix into 2N x4 size causes the subscript k in equations
(14.87)—(14.94) not to increment for each successive Ax reach, i.e. kK =1,2,3,4,
for all / rows.

Equation (14.109) may be efficiently solved by the following compact,
penta-diagonal, modified Gauss elimination algorithm. The computations
to eliminate the elements below the main diagonal proceed according to
[=2,4,6 ... 2N -2 and are:

@2 =@ fA-1k e di-1k0+2 A2 (14.111)
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n = —afa- ko ethi-1+ 0 (14.112)
We12 = =l 1,1/A- 1k 411k +2+ Ale 12 (14.113)
Mol = —Quer,f/@i-y ko1 li-1 + Fad (14.114)
@+13 = —W41,2/Q12813+ Arer 3 (14.115)
Aler14 = — Qe 2/A 2018+ Atvy 4 (14.116)
Tiey = —@a12/Q12r1+ ey (14.117)

in which k" =0 when /=2 and &’ =2 when / > 2. The x; components of the
solution vector X are obtained through a back-substitution procedure com-
mencing at /= 2N and proceeding sequentially to /= 1. Thus,

XoN = (= @aN3/@N - 1,328 - 1 + 1an) /(= Qan,3/8aN - 1 302N - 1,4 + QaNs)

(14.118)

Xt =(rn—ak +2X141) Ak 1 ... [=2N~ 1,2N-3, ... 3,1
(14.119)

X1 =(n—@axis2—asxia)fay. [=2N-22N-4,...472
’ (14.120)

in which ' =2 when /> 1and &' =0 when /= 1.

14.10.3 Enhancement of computational algorithm

FLDWAY contains an automatic procedure which increases the robust nature
of the four-point, nonlinear implicit finite difference algorithm. This enhance-
ment is quite useful when treating rapidly rising hydrographs in channels
where the cross-sections have large variations in the vertical and /or along the
x-axis. This situation may cause computational problems which are manifested
by non-convergence in the Newton—Raphson iteration or by erroneously low
computed depths at the leading edge of steep-fronted waves. When either of
these manifestations are sensed, an automatic procedure consisting of two
parts is implemented.

The first reduces the current time step (A¢) by a factor of 1/2 and repeats
the computations. If the same problem persists, At is again halved and the
computations repeated. This continues until a successful solution is obtained
or the time step has been reduced to 1/16 of the original size. If a successful
solution is obtained, the computational process proceeds to the next time level
using the original At¢. If the solution using At/16 is unsuccessful, the 6
weighting factor is increased by 0.1 and a time step of Af/2 is used. Upon
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achieving a successful solution, 6 and the time step are restored to their
original values. Unsuccessful solutions are treated by increasing 6 and
repeating the computation until § = 1.0 whereupon the automatic procedure
terminates and the solution with 8 = 1.0 and A¢/2 is used to advance the solu-
tion forward in time now using the original 6 and the At values. Often, com-
putational problems can be overcome via one or two reducticns in the time
step.

14.11 EXTERNAL BOUNDARIES AND INITIAL CONDITIONS

External boundaries which consist of the upstream and down extremities of
the waterway must be specified in order to obtain solutions to the Saint-Venant
equations. In fact, in most unsteady flow applications, the unsteady distur-
bance is introduced to the waterway at one or both of the external boundaries.

14.11.1 Upstream boundary

Either a specified discharge or water elevation time series (hydrographs) can
be used as the upstream boundary in FLDWAV. If a discharge hydrograph
Q(t) is used, the boundary equation is:

Bi=Q*'-Q(1)=0 (14.121)
in which case the partial derivatives for the Jacobian are:

aix =0B1/0Q1 =1 (14.122)

a1 k+1=0B1/0R =0 (14.123)
If a water elevation time series A(¢) is used, the boundary equation is:

Bi=h{*'-h(t)=0 (14.124)
in which case the partial derivatives are:

aix =0B1/0Q1=¢ (14.125)

a1 =0B1/0h =1 (14.126)

where ¢ is an arbitrarily small value, e.g. 0.0001. This prevents a zero value
for the element a;,; which allows the matrix solution technique previously
described to proceed without an interchange of rows needed to eliminate the
zero main-diagonal element.

The hydrographs used as upstream boundary conditions should not be
affected by the flow conditions downstream of the upstream boundary.

14.11.2 Downstream boundary

Specified discharge or water elevation time series may be used as the
downstream boundary condition. For a discharge hydrograph Q'(t), the
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boundary equation is:

By=0i'-Q'(1)=0 (14.127)
and the partial derivatives for the Jacobian are:

N k+2 = 0BN/AON =1 (14.128)

an.k+3 = 0Bn/dhn =0 (14.129)

In a water elevation time series A '(¢) such as an observed or predicted tide,
the boundary equation is;

§N=h{;,“—-h’(t)=0 (14.130)
and ,

@GN k+2 = 0BN/AON =0 (14.131)

ank+3 = dBN/OAN = 1 (14.132)

Another frequently used downstream boundary is a relation between
discharge and depth or water elevation such as a single-valued rating curve
expressed in tabular (piece-wise linear) form consisting of points (Qk,hx). Any
discharge Q' can be obtained from the table for any associated water elevation
(h’; ') at the downstream boundary by the following linear interpolation
formulia:

Q' = Ok + (Qiw1 — Q) (AL = Ai)/(hrs1 — hi) (14.133)

In this case the downstream boundary equation is:

By=0i'-Q' =0 (14.134)

and
a:nk+2=0BN/OQN = 1 (14.135)
a:nk+3 = OBN/OAN = — (Qk1 — Qi )/(Brc+1 — hi) (14.136)

The downstream boundary can be a loop-rating curve based on the Manning
equation for normal flow. The loop is produced by using the water surface
slope rather than the channel bottom slope. In this case the downstream
boundary equation is:

Bn=Q'-QON=0 (14.137)

where:

QN— | 49(A5/3>j+1(h{v_1_h{v)ln:Kc (hﬁ—l _h{l)llz
=1. .

nB*?|n AxXn-1 AXN-1
(14.138)
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and TN k-2 = 0BNJOQN = 1 + QN/ni  (AnjAQ), (14.139)

. : j+ 1 .
@iN,k+3 = 0BN/ORN = oN (3 Anjah +2 AB/ak - 2>j = ON AK.
B A N Kc‘v Ah

3
(14.140)

The downstream boundary can be a critical flow section; the downstream
boundary equation is:

Bn =0 '-0C=0 (14.141)

where oc = (,g/BA> ) (14.142)

and aink+2 =0BN/AQN =1 (14.143)
R Jj+ 1

Gavkes =0Bn/ohn = % (% _3 %)N (14.144)

The flow at the downstream boundary should not be affected by flow
conditions further downstream. Of course, there are always some minor influ-
ences on the flow due to the presence of cross-sectional irregularities
downstream of the chosen boundary location; however, these usually can be
neglected unless the irregularity is very pronounced such as to cause significant
backwater or drawdown effects. Reservoirs or major tributaries located below
the downstream boundary which cause backwater effects at the chosen bound-
ary location should be avoided. When this situation is unavoidable, the reach
of channel for which the Saint-Venant equations are being used should be
extended on downstream to a location below where the tributary enters or to
the dam in the case of the reservoir. Sometimes the routing reach may be
shortened and the downstream boundary shifted upstream to a point where
backwater effects are negligible.

14.11.3 Initial conditions

Initial conditions of water surface elevation (4) and discharge (Q) must be
specified at time ¢ = 0 to obtain solutions of the Saint-Venant equations. Initial
conditions may be specified for FLDWAYV by any of the following: (1) from
observations at gauging stations with interpolated values for intermediate
cross-sections; these must be sufficiently accurate to result in convergence of
the Newton—Raphson solution of the Saint-Venant finite difference equations
(the errors dampen-out after several time steps); (2) computed values from a
previous unsteady flow solution (this is frequently used in day-to-day flood
forecasting); and (3) computed values from a steady flow backwater solution.

In the case of steady flow, the discharge at all cross-sections can be
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determined by:
Qir1=Qi+qi Axi L i=1,23, .. .N=1 (14.145)

in which Q; is the assumed steady flow at the upstream boundary at time ¢ = 0,

and g; is the known average lateral inflow (outflow) along each Ax reach at

t = 0. The water surface elevations (4;) are computed according to the follow-
ing steady flow simplification of the momentum equation (14.62):

(Q%A)is1 — (Q*A)i+ gAi(hisy — hi + AxiSp;) =0 (14.146)

in which 4; and §f, are defined by equations (14.71) and (14.73), respectively.
The computations proceed in the upstream direction (i=N -1, ... 3,2,1) for
subcritical flow (they proceed in the downstream direction for supercritical
flow). The starting water surface elevation (An) can be specified or obtained
from the appropriate downstream boundary condition for a discharge of Ox.
Equation (14.146) can be solved by the Newton—Raphson method as applied
to a single nonlinear equation. In this case, if equations (14.83) and (14.84) are
combined, the following recursive relationship can be written in scalar form;

x* = xk— f(xRY (x5 (14.147)

in which x represents the unknown (A;), k is the number of iterations, f(x¥)
is equation (14.146) evaluated with the trial solution x*, and f’(x*) is the
derivative of equation (14.146) with respect to the unknown (A;) and evaluated
at x*. The derivative expression follows:

F1(x*)=df(x*)/dhi=(Q*B/A*)i + 0.5gBi(his1 — hi + S5; Axi)
+ gAi[ - 1 + Axi(dSy/dhi)] (14.148)
in which dSy/dh, is defined by equation (14.96).

14.12 INTERNAL BOUNDARIES

There may be locations such as a dam, bridge, or waterfall (short rapids) along
a waterway where the Saint-Venant equations are not applicable. At these
locations the flow is rapidly varied rather than gradually varied as necessary
for the applicability of the Saint-Venant equations. Empirical water elevation
—discharge relations such as weir-flow can be utilized for simulating rapidly
varying flow. In FLDWAYV, unsteady flows are routed along the waterway in-
cluding points of rapidly varying flow by utilizing internal boundaries. At
internal boundaries, cross-sections are specified for the upstream and
downstream extremities of the section of waterway where rapidly varying flow
occurs. The Ax reach length between the two cross-sections can be any
appropriate value from zero to the actual measured distance. Since, as with
any other Ax reach, two equations (the Saint-Venant equations) are required,
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the internal boundary Ax reach requires two equations. The second of the
required equations represents the conservation of mass with negligible time-
dependent storage, i.e.,

Bu=Q{*'-Qi:l=0  (14.149)
and the derivatives for the Jacobian are:
ae1x  =0Bp/dQi=1 (14.150)
Ale1k+1 = 3Bp/dhi=0 (14.151)
@e1k+2 =0BpfdQiv1=—1 (14.152)
Qe1k+3 =0Bpjohiii =0 (14.153)

The first of the two required equations is an empirical rapidly varied flow
relation. Several examples of rapidly varied flow internal boundary equations
follow.

14.12.1 Critical flow

If the internal boundary is used to represent critical flow, the following
equation is used in conjunction with equation (14.149):

3"=Q{¢l_JE(A3/2/BI/2){+I=O (14.154)
and the derivatives are:
are =0Bn/aQi=1 (14.155)

aik+1 = 0Bn/dhi = 0.5[g[AB/AR(A/B)** - 3(AB)*1/*! (14.156)

14.2.2 Dam

At a dam, the internal boundary can represent any combination of flow such
as spillway flow (uncontrolled overflow, fixed gate, time-dependent gate), crest
overflow, constant (head-independent) flow, or breach flow due to a time-
dependent failure of the dam. The general equation for flow at a dam is:

Bn=Q/*'-Qu4=0 (14.157)
where: Qa = Qbr + Qs (14.158)

in which Qpr is the time-dependent breach flow which may be zero and Q; is
the sum of all other types of flow. The breach flow can be expressed as broad-
crested weir flow corrected for submergence effects, i.e.
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Qbr = K:Qbr . (14.159)
where: Qbr=3.1b(h/* ' = hp,)¥? +2.452(h{*" = her)*”? (14.160)
Ks =1.-27.8(h,-0.67)> ... hy>0.67 (14.161)
K, =1. ... h, < 0.67 (14.162)
he = (B{E = ho)[CR{*" = hor) (14.163)
b =b cos tor > Tor (14.164)
b = Zm,,/n,, e tor € Tor (14.165)
hbr = Hom e tor> Tor (14.166)
hor = ha— (ha — Rom)tor/Tor ... tor < Tor (14.167)

in which K is a submergence correction factor due to the effects of the water
surface elevation (4;.:) downstream of the dam, b is the instantaneous width
of the breach bottom, b is the final maximum width of the breach bottom, 2,
is the time since beginning of breach formation, 7, is the interval of time
necessary for the breach te completely form, A, is the elevation of the breach
bottom, Asm is the final elevation of the breach bottom (usually assumed to be
the bottom of the damy), hg is the elevation of the crest of the dam, and z is
the side slope of the breach (1 : vertical to z: horizontal). The values of b, 75,
hor, ha, hom, and z must be known or assumed from previous breached dams.
The breach starts forming when 4/*' equals or exceeds hy, a specified eleva-
tion representing the amount of overtopping required for failure to com-
mence. The sum of all other flows (Q;) is:

Qs =KQss + Qp + KesQes + Qr (14.168)
Qs =csLy(hj*! = hy)¥? (14.169)
Qp =28ceAg(hi*! — hy)'? (14.170)
Qcs = caLa(h!*' — hg)*? (14.171)
Kes =1.-27.8(hs—0.67)> ... A > 0.67 (14.172)
hes = (h}} = hs)/(h{*' = ko) (14.173)
Kes =1. = 27.8(he—-0.67)° ... hpe>0.67 (14.174)

hre = (h{1 = ha)/(h{*" = ha) (14.175)
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in which Ks and K., are submergence correction factors for the spillway and
dam crest, respectively; c¢;, ¢;, and cq are discharge coefficients for the spillway,
gate(s) and dam crest, respectively; L, is the length of the spillway; A, is the
area of the gate opening; Ly is the length of the dam crest after subtracting
Ls; hs is the elevation of the spillway crest; A, is the elevation of the centre
of the gate(s); and Q is a constant, head-independent outflow. Also, time-
dependent gate parameters (c; and A;) may be specified via tabular, piece-
wise linear, values and associated times (¢). For further information on the ex-
pected range of the parameters in equations (14.157)—(14.175), see Fread
(1980).
The partial derivatives of equation (14.157) are:

@k =93Bn/dQi=1 (14.176)
aLk+1 =0Bn/ohi= —K,3Q4/3hi — Q4 0K,/0hi — 0Qs/0h;  (14.177)
where: dQ4,/0h; = 4.65b(h]*" = hp)''? + 6.132(hI ™' — hp,)?? (14.178)
3Ks/ohi =83.4(h,—0.67)%h,/(h!*" = hy) (14.179)

3Qs/0hi = 1.5KsscsLo(BI*" — hs)'? + 83.4Qus(hrs — 0.67)*
Brsf/(BTY = he)

+0.528c;Ag/(F*1 = hg)"? + 1.5KescaLa(hi* — ha)'/?

+ 83.4Qcs(hirc — 0.67)*Arc/(HI* ' = ha) (14.180)
and  aik+2 =3Bn/dQi.1 =0 (14.181)
@Less  =0Bn/ohicy = — QbrdK/Ohiv1 — Qs[04 1 (14.182)
where:
OK/0hiv1 = —83.4(h, —0.67)*/(h}*" — hy) (14.183)
3Qs/dhis1 = —83.4Qss(hrs — 0.67)2/(h{*" = hy)
~83.4Q:(hre — 0.6T)/(hI* ! — hy) (14.184)

14.12.3 Bridge-embankment

Another internal boundary condition can be the flow occurring at a bridge and
perhaps over its embankment which impedes flow in the floodplain. The total
flow (Qse) which may be a combination of flow through the bridge opening
(QO»), flow over the embankment (Q.), and flow through a time-dependent
breach in the embankment (Qs,). The internal boundary equation for flow at
a bridge embankment is:

B, =0/"" = Qe (14.185)
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where: Ove = Qbo + Qem + Qbr (14.186)
Qoo =28 A/ R — mIIHY? (14.187)
Qem = KemLemCem(h{*' — hem)*”? (14.188)
Kem =1. -27.8(he—0.67)° ... he>067 (14.189)
hre = (hI2!= he)[(R{*" = hem) (14.190)

in which ¢, is the bridge flow coefficient which accounts for piers, angle of flow
approach, etc. (see Chow, 1959); c.m, Lem, K.m are the discharge coefficient,
length of embankment, and submergence correction factor, respectively, for
the embankment overflows (Fread, 1980); and the flow through a breach of the
the embankment (Qy,) is defined as in equations (14.159)—(14.167) except ha
is replaced with A., the top of the embankment.

The partial derivatives of equation (14.185) are:

a,e  =0Bn/oQi=1 _ (14.191)
@ k+1 =0Bn/dhi= —0.5000/(h,’ " = hi*Y = 1.5Qem/(Ai"! = hem)

i+1

+ 83.4Qecm/Kem(hre = 0.67)2hre/(h} ™" = hem) — 0Qbr/3hi

(14.192)
ez =0Bn/0Qie1 =0 (14.193)
ks =0Bn/ohist = Qpo[0.5/(hI™! = hlF)) = BI*1/A{*1]

+ 83'4Qem/Kem(hr¢ - 0.67)2/(}1{+l — Aem) — aQbr/ahi+1
(14.194)

in which dQs,/0A; is similar to the expression K dQs,/dh; + Q4,0K/dh; in equa-
tion (14.177) and 9h;. is similar to the expression (Q4dK/3hi+1) in equation
(14.182) except hq is replaced by he..

14.12.4 Lock and dam

A waterway may include small dams with manually operated gates to pass the
flow so as to maintain a desired depth for safe navigation upstream of the
dam. A lock is provided for navigation of boats, barges, etc. past the dam.
Although the actual gate operations may not be known in the application of
FLDWAV, the assumed maintenance of a constant water elevation provides
the internal boundary equation, i.e.

Bn=h/"'-h=0 (14.195)
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in which A, is the target pool elevation which the dam operator attempts to
maintain via operation of the gates. The target pool elevation may be a con-
stant value or it may be an assumed function of time. When the computed
elevation (4; . 1) exceeds a specified elevation, the flow is assumed then to be
governed by the Saint-Venant equations.

The partial derivatives of equation (14.195) are all zero except one, i.e.

ak+1 =0Bn/fohi=1 (14.196)

14.12.5 Rating curve

A rating curve as described previously in section 14.11 can be used as an
internal boundary in which the downstream flow is assumed to have negligible
effect on the flow passing the internal boundary section. The internal boundary
equation is:

Bh=0Q/*'-Q'=0 (14.197)
in which Q' is defined by equation (14.133). The partial derivatives are:
ark =0Bn/oQi=1 (14.198)
aLk+1 =0Bn/dhi= = (Qr+1 — Ok)/(hrs1 — hi) (14.199)
ark+2 =3BnfdQis =0 (14.200)
ark+3 =0Bnfohi. =0 : (14.201)

14.13 CROSS-SECTIONS

14.13.1 Active flow sections

That portion of the channel cross-section in which flow occurs is termed active.
In FLDWAYV the active flow cross-sections may be of regular or irregular
geometrical shape. Each cross-section is specified as tabular values of channel
width and elevation, which together constitute a piecewise linear relationship.
Experience has shown that in almost all instances the cross-section may be
sufficiently described with approximately eight or less sets of widths and
associated elevations. A low-flow cross-sectional area which can be zero is used
to describe the cross-section below the minimum specified elevation, below
which the water elevation must not recede. The total cross-sectional area below
each of the widths is initially computed within the model. During the solution
of the unsteady flow equations any areas or widths associated with a particular
water surface elevation are linearly interpolated from the piecewise linear rela-
tionships of width and elevation which were specified or the area—elevation
sets initially generated within the model.
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Cross-sections at gauging station locations are generally used as computa-
tional points in the x—¢ plane. Cross-sections are also specified at points along
the river where significant cross-sectional changes occur or at points where
major tributaries enter. Typically, cross-sections are spaced farther apart for
large natural channels than for small channels, since the degree of variation
in the cross-sectional characteristics is less for the larger channels. Spacing can
range from a few hundred feet to a few miles. In addition to the consideration
of cross-sectional variation in the selecton of Ax reaches, the solution accuracy
also affects the choice of Ax. For best accuracy, the maximum reach length
(Axm) is related to At as follows:

AXm < At (14.202)

in which c is the wave speed of the essential characteristic of the unsteady flow
such as the mid-point of the hydrograph. The wave speed may be initially
estimated from equation (14.32) or from observed flows, and the time step (A?)
is selected according to equation (14.34). Since ¢ may vary with distance along
the channel, Ax, may not be constant along the channel.

In some applications the total number of cross-sections due to geometrical
variation can be reduced by using a distance-weighted average section. The
width (B) of the average section can be computed from the widths of the other
sections which are to be averaged by:

B=0.5((Bi+ Bi+1) Adi+ (Bis1 + Bis2)
,
Adiei+ ... (Bi-1+ B Adi-11/2,4di  (14.203)
1

in which B is the distance-weighted width for a particular depth of flow, Bi is
width of the ith section along a reach having a total of (/') sections to be
averaged, and Ad; is the distance between the individual sections. The total
reach length (Z Ad;) of equation (14.203) must be less than Axn of equation
(14.202).

14.13.2 Off-channel storage

A cross-section may contain portions where the flow velocity in the x-direction
is negligible relative to the velocity in the active portion. The inactive portion
of the cross-section is known as dead or off-channel storage. Off-channel
storage areas can be used to effectively account for embayments, ravines, or
tributaries which connect to the flow channel but do not pass flow and serve
only to store the flow. Another effective use of off-channel storage is to model
a heavily wooded floodplain which stores a portion of the flood waters passing
through the channel. In each of these cases the use of zero velocity for the por-
tion of the flood waters contained in the dead storage area results in a more
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realistic simulation of the actual flow than using an average velocity derived
from the main flow channel and the dead storage area. The dead storage
cross-sectional properties are described in the same manner as the active cross-
sectional areas.

14.13.3 Linearly interpolated cross-sections

Within FLDWAYV, there is an option to generate additional cross-sections
between any two adjacent specified cross-sections. The properties of the
additional sections are linearly interpolated. This facilitates adherence to
equation (14.202) for appropriate Ax reach lengths. Both active and off-
channel storage widths are generated via the interpolation procedure.

14.14 CHANNEL FRICTION

The Manning n is used to describe the resistance of flow due to channel
roughness caused by bed forms, bank vegetation, obstructions, bend effects,
and eddy losses. The Manning n is defined for each Ax reach as a specified
function of water elevation or discharge according to a tabular (piecewise
linear) relation between n and the independent variable (4 or Q). Linear inter-
polation is used in FLDWAYV to obtain n for values of 4 or Q intermediate
to the tabular values.

Alternatively, the friction effects can be represented by channel conveyance
(K<) which may be specified in FLDWAYV as a tabular function of water eleva-

tion. Conveyance is related to the Manning n and cross-sectional properties,
i.e.

e=1.494R*?/n (14.204)

The use of K. rather than n has an advantage in applications where the cross-
section consists of an in-bank portion and a rather wide, flat floodplain. The
hydraulic radius (R) can be somewhat discontinuous when the water surface
expands onto the floodplain. This discontinuity can be treated by specifying
conveyance as a function of elevation which is smoothed in the vicinity of the
discontinuity. This provides more realistic flows and helps to avoid numerical
problems during the computations.

The channel routing computations are often sensitive to the Manning n or
K. In the absence of necessary data (observed stages and discharges), n can
be estimated; however, best results are obtained when the Manning #n is
adjusted to reproduce historical observations of water elevation and discharge.
The adjustment process or calibration may be either trial-and-error or an
automatic iterative procedure. The automatic calibration algorithm is
described later.
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14.15 LATERAL INFLOWS

FLDWAYV incorporates small tributary inflows or overland flow via the lateral
inflow term (q) in equations (14.61) and (14.62). These are considered
independent of flows occurring in the river to which they are added. They are
specified as a time series of flows with constant or variable time intervals. They
can be specified for any Ax reach along the river as the sum of all lateral
inflows within the Ax reach. Outflows may be simulated by assigning a
negative sign to the specified flows. Linear interpolation is used for flows at
times other than the specified intervals.

14.16 MODIFIED SAINT-VENANT EQUATIONS FOR
FLOODPLAIN FLOWS

Unsteady flow in a natural river which meanders through a wide floodplain
is complicated by large differences in geometric and hydraulic characteristics
between the river channel and the floodplain, as well as the extreme differences
in the hydraulic roughness coefficient. The flow is further complicated by the
meandering of the main channel within the floodplain; this causes a portion
of the total flow to ‘short-circuit’ and proceed downstream along the more
direct course afforded by the floodplain rather than along the more circuitous
route of the meandering channel. This tendency for short-circuiting of the flow
is enhanced by the greater longitudinal slope associated with the floodplain
than that of the main channel; however, the short-circuiting effect is dimin-
ished by the greater hydraulic roughness of the floodplain. Further complex-
ities are created by portions of the floodplain which act as dead storage areas,
wherein the flow velocity is negligible.

FLDWALV contains a modified form of the Saint-Venant equations for an
alternative method for routing floods in meandering rivers with floodplains.
A modification of the one-dimensional Saint-Venant equations avoids the
obvious use of the more complex and computationally time-consuming two-
dimensional equations. The one-dimensional equations are modified such that
the flow in the meandering channel and floodplain are identified separately.
Thus, the differences in both hydraulic properties and flow-path distance are
taken into account in a physically meaningful way, but one that is one-
dimensional in concept. This development differs from conventional one-
dimensional treatment of unsteady flows in rivers with floodplains, wherein the
flow is either averaged across the total cross-sectional area (channel and
floodplain) or the floodplain is treated as off-channel storage and the reach
lengths of the channel and floodplain are assumed.to be identical.

The Saint-Venant equations are modified (Fread, 1976) as follows:

(KenQ) + (KiyQ) + HKrQ) + 0 Aen + Ar+ Ap+ Ao)
0Xcn dxyr ax,f at

g=0 (14.205)
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2 2 N2 2
90 | HKHQ'[Acn)  HKHQ* /A1) , 3(KY Q/Arf)+ 2A. (6'1 F S+ Se)
at 0Xen axyy axrs a

Xcn

+ gAU’(aﬁ}L + Sflf) + gArf(aah + Sf,,> 0 (14.206)

The parameters (Kcn, Kis; Krs) proportion the total flow ( Q) into the channel,
left floodplain, and right floodplain, respectively. These are defined as follows:

Ken=1/(1 + ki + k) (14.207)
Kig = kif(1 + ki + /) (14.208)
Kep=k/(l + ki + k;) (14.209)
Oy  nenAy <R[f)2/ (Axc )
k = 2Y _ Nendy 14.210
and ! an nlfAcn cn Axlf ( )
2/3 172
k, =2 oAy (R’f (—Ax”') (14.211)
an rfAcn cn, Ax,f

Equations (14.210) and (14.211) represent the ratio of flow in the channel
section to flow in the left and right floodplain sections; the flows are expressed
in terms of the Manning equation with the energy slope approximated by the
water surface slope (A/#/Ax). The friction slope terms in equation (14.206) are
similar to equation (14.73).

Equations (14.205) and (14.206) are approximated with the weighted, four-
point finite difference expressions of equations (14.66)—(14.68). The resulting
finite difference equations, similar to equations (14.69) and (14.70), are solved
by the Newton—Raphson iterative method for nonlinear equations using the
special penta-diagonal matrix technique described by equations (14.111)—
(14.120). The coefficients K;; or K,y are considered to be zero until the water
elevation is sufficient to produce wetted top widths, Bis or B,y, greater than
1 ft. Thus, any terms associated with the left or right floodplain in equations
(14.205) and (14.206) are set to zero, as are the derivatives associated with the
terms. This avoids numerical difficulties such as division by zero, etc. during
the computer solution.

14.17 SUPERCRITICAL OR MIXED FLOW

In the preceding presentation it was assumed the flow is always subcritical at
each cross-section along the routing reach. When the flow becomes super-
critical it requires special treatment of the external boundaries. Supercritical
flow may occur all along a channel reach, or it may occur at intermittent loca-
tions along the routing reach. The former is easier to treat, while the latter
(‘mixed flow’) is more difficult. The flow may be mixed in both time and loca-
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tion along the channel. The locations of each type of flow (supercritical or sub-
critical) must be determined at each time step, and various types of boundary
conditions must be used with each partial reach of supercritical or subcritical
flow.

Supercritical flow occurs when the Froude number (Fi) is greater than that
for critical flow, i.e.

Fi= Qi/(Jg/BiAY?) > Fe (14.212)

in which F. is the Froude number for critical flow. A value of 1.0 is used for
F., although this may be slightly changed to account for numerical effects.
Subcritical flow occurs when F; < F, and critical flow occurs when Fi = Fe. A
priori estimation of the occurrence of supercritical flow is conveniently deter-
mined through use of the channel bottom slope, i.e. supercritical flow occurs
if So > S., where S. (the critical slope) may be expressed as follows:

S. = gn?/[2.21(A/B)"*] (14.213)

14.17.1 Supercritical flow

If the entire routing reach is supercritical flow, the downstream boundary
condition is no longer required since flow disturbances cannot propagate
upstream; hence, the downstream boundary is superflucus. However, in order
to have a determinate system of implicit difference eguations, there must be
2N equations to match the 2N unknowns. The additional equation needed to
make a determinate system is an additional upstream boundary equation in the
form of a depth-discharge relation, i.e.,

B,=Q{*'-0S5=0 (14.214)
1.486A4 5/3\ j+1 h{ _ hz. 1/2 h{— h,' 172

where: QS—( YL )l ( Axll) =Kc‘( Ax1> (14.215)

The partial derivatives of equation (14.214) for the Jacobian are:
az,1=038,/0Q: =1 (14.216)

. d Jj+1

ermabfons =93 (Lndh 3B 2ABIORYT! 05 8Ky (407

3 n A B 1 Ko Ahy

and the subscript (/) of equations (14.87)—(14.94) starts with a value of 3 and
progresses to a value of 2N — 2 in steps of 2. The matrix solution given by
equations (14.111)—(14.120) must be slightly modified since there are two
upstream boundary equations and none at the downstream boundary. When
determining the initial conditions, equation (14.145) can be used although the
unknown is hi.1 and the first term for equation (14.146) becomes
(= Q*B/A%)i+1, Bi becomes Bi.1, and the —1 in the brackets becomes +1.
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The computations proceed from upstream to downstream (i=1, 2, ...
2N - 1); and A; is determined by solving the Manning equation, (14.215) for
h{*! and the term (k4 — h%)/Ax, is replaced with the channel bottom slope bet-
ween the first and second cross sections.

14.17.2 Mixed flow

When the flow changes with either time or distance along the routing reach
from supercritical to subcritical or conversely, the flow is described as ‘mixed’.
During each time step, subreaches are delineated where supercritical or sub-
critical flow exists by computing the Froude number at each cross-section and
grouping consecutive Ax; reaches into either subcritical or supercritical
subreaches. Then, the Saint-Venant equations are applied and solutions
obtained for each subreach, commencing with the most upstream subreach
and progressing downstream until each subreach has been solved. Appropriate
external boundary equations are used for each subreach.

Where the flow changes from subcritical to supercritical the downstream
boundary for the subcritical subreach is the critical flow equation (14.140).
The two upstream boundary equations for the supercritical subreach are:

By =Q*'-0'=0 (14.218)
Bn =hi*'—h.= (14.219)
a1 =3BnfdQ: =1 (14.220)
a2 =0Bn/dh =0 (14.221)
@21 =3Bp/dQ; =0 (14.222)
@22 =3Bp/dh =1 (14.223)

in which Q’ is the computed flow at the downstream boundary of subcritical
subreach, Qf*! is the flow at the same cross-section which is now the first
section of the supercritical subreach, A. is the critical water surface elevation
computed at the downstream boundary of the subcritical subreach, and hit!
is the water elevation of the first section of the supercritical subreach. The
supercritical subreach does not require a downstream boundary equation.

Where the flow changes from supercritical to subcritical, the upstream
boundary equation for the subcritical subreach is:

Bn= Q/*'-Q"=0 (14.224)

in which Q" is the computed flow at the last cross-section of the supercritical
reach and Qf* ' is the flow at the first cross-section of the subcritical subreach.
The downstream boundary for the subcritical subreach would be equation
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(14.140) if another supercritical subreach exists below the subcritical subreach
or the appropriate condition described by equations (14.126)—(14.140) if the
subcritical subreach is the last subreach in the routing reach. The depth of flow
at the first section of the subcritical subreach is determined by the downstream
boundary condition and the Saint-Venant equations applied to the subcritical
subreach. A hydraulic jump occurs between the last section of the supercritical
subreach and the first section of subcritical subreach, although an equation for
such is not directly used. To account for the possible movement of the
hydraulic jump, the following procedure is utilized before advancing to the
next time step: (1) the water elevation at the first section of the subcritical
subreach is extrapolated to several upstream cross-sections near the
downstream end of the supercritical subreach; (2) the sequent depths (water
elevations) of the same sections in the supercritical reach are computed; and
(3) the sequent elevations are compared with the extrapolated elevations, and
the first section of the subcritical subreach is determined as that section nearest
the intersection of two elevations.

14.13 THE CHANNEL NETWORKS

The implicit formulation of the Saint-Venant equations is well-suited from the
standpoint of accuracy for simuiating unsteady flows in a network of channeis
since the response of the system as a whole is determined within a certain con-
vergence criterion for each time step. However, a network of channels presents
complications in achieving computational efficiency when using the implicit
formulation. Equations representing the conservation of mass and momentum
at the confluence of two channels produce a Jacobian matrix in the
Newton—Raphson method with elements which are not contained within the
narrow band along the main diagonal of the matrix. The column location of
the elements within the Jacobian depends on the sequence numbers of the
adjacent cross-sections at the confluence. The generation of such ‘off-
diagonal’ elements produces a ‘sparse’ matrix containing relatively few non-
zero elements. Unless special matrix solution techniques are used for the sparse
matrix, the computation time required to solve the matrix by conventional
matrix solution techniques is so great as to make the implicit method
unfeasible. The same situation also occurs for the linearized implicit methods
which must also solve a system of linear equations similar to the Jacobian. One
of two algorithms can be selected in FLDWAY for an efficient computational
treatment of channel networks.

The first, called the ‘relaxation’ algorithm, is restricted to a dendritic (tree-
type) network of channels in which the main channel has any number of
tributary channels joining with it. Sometimes, dendritic systems with second-
order tributaries (tributaries of tributaries) can be accommodated in the
relaxation technique by reordering the dendritic system, i.e. selecting another
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branch of the system as the main channel. In the relaxation algorithm no
sparse matrix is generated; the Jacobian is always banded as it is for a single
channel reach.

The second, called the ‘network’ algorithm, can be used on almost any
natural system of channels (dendritic systems having any order of tributaries;
bifurcating channels such as those associated with islands, deltas, flow
bypasses between parallel channels; and tributaries joining bifurcated
channels). The network algorithm produces a sparse matrix which is solved by
a special matrix technique which is described later. The relaxation algorithm

is slightly more efficient than the network algorithm, but the former does not
have the versatility of the latter.

14.18.1 Relaxation algorithm

During a time step the relaxation algorithm solves the Saint-Venant equations
first for the main channel and then separately for each tributary of the first-
order dendritic network. The tributary flow at each confluence with the main
channel is treated as lateral flow (g) which is first estimated when solving
Saint-Venant equations for the main channel. Each tributary flow depends on
its upstream boundary condition, lateral inflows along its reach, and the water
surface elevation at the confluence (downstream boundary for the tributary)
which is obtained during the simulation of the main channel. Due to the
interdependence of the flows in the main channel and its tributaries, the
following iterative or relaxation algorithm (Fread, 1973) is used:

q*=aq+ (1 —a)g** (14.225)

in which « is a weighting factor (0 < a < 1), q is the computed tributary flow
at each confluence, g** is the previous estimate of g, and g* is the new estimate
of g. Convergence is attained when g is sufficiently close to g**, i.e.
| g — g**| < eg- Usually, one or two iterations is sufficient; however, the
weighting factor has an important influence on the algorithm’s efficiency.
Optimal values of a can reduce the iterations by as much as half. A priori
selection of « is difficult since it varies with each dendritic system. Good first
approximations for a are in the range 0.6 < a < 0.8.

The acute angle (w,) that the tributary makes with the main channel is a
specified parameter. This enables the inclusion of the momentum effect of the
tributary inflow via the term (—gv,) of equation (14.80) as used in the
momentum equation, equation (14.62). The velocity of the tributary inflow is .
given by:

Ve=(Q/A)N coOs w; (14.226)

in which N denotes the last cross-section of the tributary.
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14.18.2 Network algorithm

The network algorithm is used when the channel network consists of any or
all of the following: (1) second- and higher-order tributaries; (2) bifurcations
around islands with either zero, one, or two bypasses through the island; (3)
dendritic branches joining any portion of the bifurcated branches; and (4) a
dendritic network associated with river delta formations. The algorithm is
based on the treatment of the channel junctions (confluences, bifurcations) as
internal boundary conditions using the following three equations:

Bn=0Q*' + Qi - Qir! - As/ar =0 (14.227)
Br=2g(h/* ' = hi*}) +(Q¥AR)* - T(Q*AM) =0  (14.228)

+

Bry=2g(hi* " — hi*1) + (Q¥AY* ' = T(Q*AM) =0 (14.229)

i'+1 i'+1

where: = = Axi/(6 ACYBCR® £ bt e mit - K=kl = W) (14.230)
po=itm+l (14.231)
B =B/+Bl, +B) cos w (14.232)
T =1+Cm+Cs (14.233)
Cm=(0.1+0.83Q4./Q% , ) (w/90)* (14.234)
Cy =2g Axii?/[2.21(D*?Y] (14.235)

in which D is the average depth in the junction, 7 is the Manning n for the

junction, w is the acute angle between the upstream reach and the branch, u

is an exponent taken as unity, and m is the total number of Ax reaches located

upstream (downstream) along the branching channel. T he parameters Crn. and

Cy are related to the head loss due to mixing (Lin and Soong, 1979) and

friction effects, respectively. They can be specified as zero values in FLDWAY.
The partial derivatives of equation (14.227) for the J acobian are:

aQni-1 =94Bn/oQi=1 (14.236)
an =98Bn/dhi = - B Axi/(6 AV) (14.237)
ask =0BnfaQi =1 (14.238)
Quiek+1 =0Bhi = — B Axi/(6 AY) (14.239)
Ariek-+2 =0Bn/Qiv1=—1 (14.240)

Gisiss =3Bn/ohi 1= —B Axif(6 AV) . (14.241)
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The derivatives of equation (14.228) are:

-k =3Bp/dQi=2(Q/AN{*! (14.242)
1 -kes1 =03Bpfohi=2g - 2(Q*B/A%)i+! (14.243)
anp-1 =3Bp/Qi 1 =2T(Q/AN4] (14.244)
a1 =03Bp/dhi «1 = —2g - 2T(Q*BJA®Yir}, (14.245)
The partial derivatives of equation (14.229) are;

ar+r0-1 =0BpfoQi =2(Q/A%)iF! (14.246)
@10 =0Bn/ohi. =2g - 2(Q*B/A%)i! (14.247)

@ +1, 1+1=03Bn/dQi 41 = — 2T(Q/AYiH}, (14.248)

@ +14+2=0Bn/ohi .\ = —2g + 2T(Q*B/A3)i% ! (14.249)

The subscript (/) is determined by the sequence number of the most
upstream cross-section. The subscripts (/', k', k") are automatically determin-
ed so as to minimize the number of off-diagonal elements in the Jacobian and
to minimize the creation of new off-diagonal elements during the elimination
phase of the matrix solution. Also, the way in which the cross-sections are
assigned sequential numbers within the channel network is most important in
effecting the desired minimization. The numbering scheme is as follows:
numbers run consecutively in the downstream direction until a dendritic-type
junction is reached; then the most upstream section of the dendritic branch is
given the next consecutive number and the numbes increase in the downstream
direction along this branch until another junction is reached; then the most
upstream section of that dendritic branch is numbered and the numbers
increase in the downstream direction along that branch until a new junction
is reached; this is repeated until all sections have been numbered, including the
first cross-section of the branch of the very first dendritic-type junction; then
the numbers continue to increase along the downstream branch of this
junction. Bifurcations are numbered in a similar manner.

Computational efficiency is achieved by use of a specially developed matrix
solution technique of the Gauss elimination type which operates on only non-
zero elements in the matrix through use of a specified code number for each
cross-section in the network of channels. The specified code number is as
follows: (1) regular cross-section, (2) upstream boundary, (3) downstream
boundary, (4) dendritic-type junction, (5) dendritic-type junction emanating
from a bifurcated channel branch, (6) upstream junction of a bifurcation
around an island, (7) downstream junction of a bifurcation around an island,
(8) bifurcation-type junction emanating from another bifurcated channel and
joining with a third bifurcated channel, and (9) bifurcation-type junction
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emanating from a bifurcated channel and joining into the other branch of the
bifurcated channel.

Three subroutines in the FLDWAYV program accomplish the special treat-
ment of channel networks. The first determines the appropriate row and
column numbers of the derivative elements in the Jacobian, the second
evaluates the derivatives, zad the third solves the matrix. The Jacobian is a
2N % 2N matrix. The number of operations (addition, subtraction, multiplica-
tion, division) required to solve the matrix is approximately (102 + 46J)N,
where J is he total number of junctions. This is compared with (95N — 43)
operations for the relaxation algorithm, (38N — 19) for a single channel using
equations (14.111)-(14.119), and 16/3N*+ 8N+ 14/3N) for a standard
Gauss elimination method for solving a 2N x 2N matrix. Generally, the
simulation of a channel network requires about two to three times as much
computational effort as a single channel when each have N cross-sections.

14.19 LEVEE EFFECTS

Flows which overtop a levee located along either side or both sides of a channel
may be simulated in FLDWAYV, since any number of Ax reaches may bypass
flow via a broadcrested weir-flow equation to another channel which
represents the floodplain (beyond the levee). If the system of channels in-
cluding floodplain channels is treated by ihe relaxation technique, the
floodplain channel may either directly connect back into the waterway at some
downstream location, or it may be disconnected as in the case of the floodplain
within a ringed levee where the flow is ponded with no exit. If the channel
system is treated by the network technique, the floodplain must hydraulically
connect with the waterway. The hydraulic connection may be either a natural
confluence or a flap-gated gravity drainage pipe. The flow in the floodplain can
affect the overtopping levee flows via a submergence correcton factor Ki
similar to that used at internal boundaries of dams. The flow may also pass
from the waterway to the floodplain through a time-dependent crevasse
(breach) in the levee using a breach-flow equation similar to that used at
internal boundaries of dams.

The overtopping and /or breach flow is routed through the floodplain which
is considered to be a tributary of the waterway along which the levee is located.
The tributary (floodplain) channel must have a fictitious low-flow channel in
which a smalil steady flow occurs at all times before the lateral inflow from the
overtopped (breached) levee enters. The low flow which is specified via the
upstream boundary condition for the tributary is necessary so that the Saint-
Venant equations applied to the tributary can be continuously solved during
the simulation; however, at the hydraulic connection with the channel, the fic-
titious low flow is not added to the channel flow, nor is it included in the flow
that ponds within a ringed levee.



484 D. L. Fread

Depending on the relative elevations in the channel and floodplain
(tributary), the overtopping levee flow can reverse its direction and flow from
the floodplain back into the channel. Each Ax; reach for the channel has a cor-
responding Ax. reach along the floodplain channel. Each Ax; reach has a
submergence correcton factor (K. ), a broadcrested weir flow coefficient (Cp),
and a mean elevation (A ) of the top of the levee. The effect of the levee flow
is achieved by considering it to be lateral inflow of outflow (g) in equations
(14.61) and (14.62). When routing the flow in the channel, if the flow overtops
the levee and enters the floodplain it is considered to be bulk lateral outflow.
When routing the flow in the floodplain the levee overtopping flow is con-
sidered to be lateral inflow. In either case the overtopping flow is computed
as follows:

Qie; = SeCreKief(A—hie))** ... A > hi (14.250)
where Se =(A-h)/|h-h]| (14.251)
A =k e hi> hy, (14.252)
h  =h, e i< by, (14.253)
h =h,, . h>h, (14.254)
h =h oo B < Ay, (14.255)
hi =0.5(hi*'+nith (14.256)
Riw =0.5(hit ' + hit 1, (14.257)
Kie; = 1 .. v <0.67 (14.258)
Kie; = 1. = 27.8(y - 0.67)° ey > 0.67 (14.259)
Y == hie) (R~ ) (14.260)

in which S, determines the appropriate sign (— for outflow, + for inflow), &;
is the average water elevation along the Ax; reach, A, is the average water
elevation along the same Ax reach of the floodplain. Of course, the lateral flow
may be zero when the water elevation in either channel does not overtop the
levee or when the elevations are exactly the same, i.e.

Qe;=0 ... A< hiy b < hy (14.261)
qQe;=0 ... h=h (14.262)

Additional terms must be included in certain elements of the Jacobian in the
Newton—Raphson solution to account for the effect of the levee lateral inflow
(outflow). In equation (14.88) the following additional term is required:
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—0 Ax; dgjdhi= -6 Axiq,.,-[l(';fi/l a/; -840 - 3'(,6:)2 Calk a"‘] (14.263)
where: dh/dh; = 0.5 ver hi> gy (14.264)
3hR/dhi=0 Y. (14.265)
dv/ohi= —0.5v/(A—he;)) ... hi> hy,, v> 067  (14.266)
3v/dhi=0.5/(h — hie;) vo. hi< Ry, v > 0.67 (14.267)

In equation (14.90) the additional term is dq/dh; . which is given by the
same expression as in equation (14.263) except A; is replaced with 4; ;. When
applying the Saint-Venant equations to the Ax., reach of floodplain, equation
(14.263) is used to introduce the additional terms in equations (14.88) and
(14.90). However, in this case the expression in equations (14.243)—(14.267)
must be slightly modified, i.e. A, # and h; are replaced with &, h; &
respectively.

The overtopping levee flow is assumed to enter perpendicular to the
direction of flow in the floodplain. Thus, the lateral flow does not affect the
conservation of momentum equation (14.62) except when it is considered to
be buik lateral outflow. In this case, equations (14.106) and (14.107) are
appropriate.

ims

14.20 MODEL CALIBRATION (AUTOMATIC)

Calibration is the process by which values of model parameters are adjusted
until results of simulations correspond to measured (observed) flow condi-
tions. A critical task in the calibration of dynamic wave models such as
FLDWAV is the determination of the Manning n which often varies with
discharge or stage, and with distance along the waterway. Calibration may be
a manual trial-and-error process; however, FLDWAV has an option to
automatically determine the optimum Manning 7 which will minimize the dif-
ference between computed and observed hydrographs via a highly efficient op-
timization technique (Fread and Smith, 1978). The technique can be applied
to a single reach of waterway or any dendritic system which can be simulated
with the relaxation method. The Manning n or conveyance factor (K.) may
be constant or have a piecewise linear variation with either discharge or water
elevation for each reach of the waterway bounded by gauging stations from
which observed water elevation hydrographs are available.

In the automatic calibration technique optimum Manning n values are se-
quentially determined for each reach bounded by gauging stations, commenc-
ing with the most upstream reach and progressing reach-by-reach in the
downstream direction. Dendritic river systems are decomposed into a series of



486 D. L. Fread

single reaches connected by appropriate external boundary conditions.
Tributaries are calibrated before the main-stem waterway and their flows are
added to the main stem as lateral inflows. An observed discharge hydrograph
is specified at the upstream boundary of each waterway, while an observed
water elevation hydrograph at the downstream gauging station of each reach
is used as the downstream boundary condition. The computed water elevation
hydrograph at the upstream boundary is tested against the observed
hydrograph at that point. Statistics of bias ($;) and root-mean-square (r.m.s.)
error are computed for j = 1,2,3, ... J ranges of discharge or water elevation
so that the Manning n or XK. can be calibrated as a function of discharge or
stage. For each range of discharge, an improved estimate of the optimum
Manning n (nf*') is obtained via a modified Newton—Raphson iterative
method, i.e.

k k k-1
,,k+1=,,f_4’f("j -n")
! (@®f -2

in which the k superscript denotes the number of iterations and ®; is the bias
for the jth range. Equation (14.268) can be applied only for the second and
successive iterations; therefore, the first iteration is made using the following
estimator:

o k>2j=1,2,...J (14.268)

nfrl=nf(1.0-0.018f/|®f|) ...k=1;j=1,2,...J(14.269)
in which a small percentage change in the Manning » is made in the correct
direction as determined by the term (— &/ | ®f | ). The convergence properties
of equation (14.268) are quadratic with convergence usually obtained within
three to five iterations. Improved Manning n values obtained via equation
(14.268) are used and the cycle repeated until a minimum r.m.s. error for the
reach is found. Then, the discharges computed at the downstream boundary
using the otimum Manning 7 are stored internally and specified as the
upstream boundary condition for the next downstream reach.
Computational requirements for the calibration technique are less than
twice that required for an application of FLDWAYV to the same waterway
without the calibration option utilized.

14.21 SELECTED APPLICATIONS OF FLDWAV

Four applications of FLDWAYV are presented. They include: (1) a long, very
mild sloping large river with a slow rising flood wave; (2) a dendritic river
system consisting of four mild sloping large rivers with moderately rising flood
waves and mutual backwater effects among the channels of the network; (3) a
large, very mild sloping dendritic river system affected by a large tide at its
mouth; and (4) a moderately sloping river subjected to a rapidly rising dam-
break flood wave. These applications represent a wide spectrum of wave and
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channel characteristics for which the dynamic wave model is particularly weil-
suited and potentially the most accurate of the routing models.

14.21.1 Lower Mississippi

FLDWAYV was applied to a 291.7 mile reach of the Lower Mississippi River
from Red River Landing to Venice shown schematically in Figure 14.2. Six
intermediate gauging stations at Baton Rouge, Donaldsonville, Reserve,
Carrollton, Chalmette, and Point a la Hache were used to evaluate the simula-
tions. This reach of the Lower Mississippi is contained within levees for most
of its length, although some overbank flow occurs along portions of the upper
70 miles. Throughout the reach the alluvial river meanders between deep bends
and relatively shallow crossings; the sinuosity coefficient is 1.6. The low flow
depth varies from a minimum of 30 ft at some crossings to a maximum depth
of almost 200 ft in some bends. The average channel width is approximately
% mile. The average channel bottom slope is a very mild, 0.0000064. The Man-
ning n varies from about 0.012 to 0.030. The discharge varies from low flows
of about 100,000 cfs to flood discharges of over 1,200,000 cfs. A total of 25
cross-sections located at unequal intervals ranging from 5 to 20 miles were
used to describe the 291.7 mile reach.

RED RIVER LDG (M1 302.4)

MORGANZA
DIVERSION

BATON ROUGE

DONALDSONVILLE

RESERVE
— BONNET CARRE DIVERSION

MISSISSIPPI

-+ GAGING STATION AND
NEW ORLEANS COMPUTATIONAL NODE
—— COMPUTATIONAL NODE

CHALMETTE — LATERAL FLOW OR QUTFLOW

PT A LA HACHE

VENICE (M1 10.7

Figure 14.2 Schematic of Lower Mississippi River



488 D. L. Fread

= (Observed
secesse Simuiated RMS =045 ft

10

lilllllll[lllllllll‘lil

Stage (ft. above MSL)
o

[¢]

O L ‘ 1 | 1 ‘ 1 l 1 l 1 l

10 20 30 40 50 60
Time (days)

Figure 14.3 Observed vs. simulated stages at Donaldsonviile for 1966 flood

The reach was first automatically calibrated by FLDWAYV for the 1969
spring flood. Time steps of 24 hours were used. Then, using the calibrated set
of Manning n vs. discharge for each reach bounded by gauging stations, the
1969 flood was simulated using water elevation (stage) hydrographs for
upstream and downstream boundaries at Red River Landing and Venice,
respectively. The simulated stage hydrographs at the six intermediate gauging
stations were compared with the observed hydrographs. The r.m.s. error was
used as a statistical measure of the accuracy of the calibration. The r.m.s.
error varied from 0.17 to 0.36 ft wiih an average value of 0.25 ft.
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Figure 14.4 Observed vs. simulated stages at Baton Rouge for 1966 flood
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Table 14.1 Summary of flood simulations in Lower
Mississippi River (Red River Landing to Venice) for the years

1959—-1971
Average r.m.s. error Peak discharge
Year (ft.) (1000 cfs)
1959 0.62 750
1960 0.31 850
1961 0.47 1220
1962 0.61 1155
1963 0.38 905
1964 0.51 1140
1965 0.44 1040
1966 0.38 1090
1967 0.38 700
1968 0.36 980
1969* 0.25 1065
1970 0.91 1080
1971 0.46 940

*Calibrated

Several historical floods from the period 1959—71 were then simulated using
the calibrated Manning n values obtained from the 1969 flood. An example of
simulted vs. observed stages is shown in Figures 14.3 and 14.4 for the 1966
flood. Average r.m.s. errors for all six stations for each of the simulated floods
are shown in Table 14.1. The average r.m.s. error for all the floods was 0.47 ft.
This compares with 0.25 ft for the calibrated flood of 1969, indicating that for
this reach of the Mississippi there is not a significant change in the channel
roughness from one flood event to another. A calibration run required 7 s on
an IBM 360/195 computer system while a normal simulation run required 6 s.

14.21.2 Mississippi—Ohio—Cumberiand—Tennessee System

A dendritic channel system consisting of 393 miles of the Mississippi—Ohio—~
Cumberland—Tennessee (MOCT) River System was also simulated using
FLDWAYV. A schematic of the river system is shown in Figure 14.5. Eleven
intermediate gauging stations located at Fords Ferry, Golconda, Paducah,
Metropolis, Grand Chain, Cairo, New Madrid, Red Rock, Grand Tower,
Cape Girardeau, and Price Landing were used to evaluate the simulation.
In applying FLDWAY to this system the main channel was considered to be
the Ohio—Lower Mississippi segment with the Cumberland, Tennessee, and
Upper Mississippi considered as first-order tributaries. The channel bottom
slope is mild, varying from about 0.000047 to 0.000095. Each branch of the
river system is influenced by backwater from downstream branches. Total
discharge through the system varies from low flows of approximately
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Figure 14.5 Schematic of Mississippi—Ohio—Cumberland—Tennessee (MOCT) River
System

120,000 cfs to flood flows of 1,700,000 cfs. A total of 45 cross-sections located
at unequal intervals ranging from 0.5 to 20 miles were used to describe the
MOCT river system.

The MOCT system was calibrated to determine the n—Q relationship for
each of 15 reaches bounded by gauging stations. Time steps of 24 h were used.
About 25 s of IBM 360/195 CPU time were required by FLDWAYV to perform
the calibration; a simulation run required only about 15 s. The flood of 1970
was used in the automatic calibration process. The average r.m.s. error for all
15 reaches was 0.60 ft. Typical comparisons of observed and simulated stages
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for the Cairo and Cape Girardeau gauging stations are shown in Figures 14.6
and 14.7 respectively.

Using the calibrated n—Q relations, the 1989 flood was simulated. Stage
hydrographs at Shawneetown and Chester and discharge hydrogaphs at
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Figure 14.7 Observed vs. simulated stages at Cape Girardeau for 1970 flood
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Barkely Dam and Kentucky Dam were used as upstream boundary conditions,
and a rating curve was used as the downstream boundary condition at
Caruthersville. The average r.m.s. error for the 11 intermediate gauging
stations was 0.56 ft.

14.21.3 Columbia—Willamette System

FLDWAYV was applied to the 130-mile reach of the lower Columbia River
below Bonneville Dam, including the 25-mile tributary reach of the lower
Willamette River. A schematic of the river system is shown in Figure 14.8.

This reach of the Columbia has a very flat slope (0.000011) and the flows are
affected by the tide from the Pacific Ocean. The tidal effect extends as far
upstream as the tailwater of Bonneville Dam during periods of low flow.
Reversals in discharge during low flow are possible as far upstream as
Vancouver. A total of 25 cross-sections located at unequal distance intervals
ranging from 0.6 to 12 miles were used to describe the river system. One-hour
time steps were used in the simulations which required about 11 s on an IBM
360/5 computer system.

The systemn was first calibrated for a 4-day period in August 1973. Seven
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Figure 14.8 Schematic of lower Columbia—Willamette River System



intermediate gauging stations at Warrendale, Washougal, Vancouver,
Portland, Columbia City, Rainier, and Wauna were used along with the gaug-
ing stations at the extremities of the system, i.e., Bonneville, Oregon Falls, and
Tongue Point. Another 5-day period in August 1973 was then simulated using
the calibrated n—Q relations. Upstream and downstream boundaries were
observed discharges and stages, respectively. The average r.m.s. error for all
stations in the simulation run was 0.21 ft. Some examples of simulated and
observed stage hydrographs for Portland and Wauna are shown in Figures
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14.21.4 Teton Dam-break flood

The Teton Dam, a 300-ft high earthen dam with a 3000-ft long crest, failed
on 5 June 1976, killing 11 people, making 25,000 people homeless, and
inflicting about $400 million in damages to the downstream Teton—Snake
River Valley. Data from the US Geological Survey provided observations on
the approximate development of the breach, description of the reservoir
storage, downstream cross-sections and estimate values of the Manning’s n
approximately every 5 miles, indirect peak discharge measurement at three
sites, flood peak travel times, and flood peak elevations. The inundated area
is shown in Figure 14.11.

The following breach parameters were used in DAMBRK to reconstitute the
downstream flooding due to the failure of Teton Dam: 7», = 1.25 h, 6 = 150 ft,
2=0, hem=0.0, hy = hg =261.5 ft, Q = 16,000 cfs. The initial depth of the
reservoir was 261.5 ft. Cross-sections at 12 locations shown in Figure 14.11
along the 60-mile reach of the Teton—Snake River Valley below the dam were
used. The average bottom slope of the 60-mile reach is 0.00135. Five top
widths were used to describe each cross-section. The downstream valley con-
sists of a narrow canyon (approximately 1000 ft wide) for the first 5 miles and
thereafter a wide valley which was inundated to a width of about 9 miles. The
estimated Manning n values vary from 0.028 to 0.047. Additional cross-
sections were interpolated su<h that computational reach lengths varied from
0.5 to 1.5 miles. The downstream boundary was assumed to be channel flow
control as represented by a loop rating curve giving by equation (14.136).

The computed outflow hydrograph is shown in Figure 14.11. It has a peak
value of 1,652,300 cfs, a time to peak of 1.25 h, and a total duration of about
6 h. The peak is about 20 times greater than the flood of record. The temporal
variation of the computed outflow volume compared within 5 per cent of
observed values. The computed peak discharge values along the 60-mile
downstream valley are shown in Figure 14.12 along with three observed (in-
direct measurement) values at miles 8.5, 43.0, and 59.5. The average difference
between the computed and observed values is 4.8 per cent. Most apparent is
the extreme attenuation of the peak discharge as the flood wave propagates
through the valley. Losses due to infiltration and detention storage behind
irrigation levees were assumed to vary from zero to a maximum of
—0.30 cfs/ft and were acounted for by the lateral outflow (g) in equation
(14.61).

The a priori selection of the breach parameters (7»- and 5) causes the greatest
uncertainty in simulating dam-break flood waves. However, sensitivity studies
(Fread, 1980) show that large differences in the discharges near the Teton Dam
rapidly diminish in the downstream direction. After 15 miles the variation
diminished to (+ 15 to —8 per cent) for variations in 4 of a factor of 2 and
in 7, of a factor from 0.3 to 2. The tendency for extreme peak attenuation
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and rapid damping of differences in the peak discharge is accentuated in the
case of Teton Dam due to the presence of the very wide valley. Had the narrow
canyon extended all along the 60-mile reach to the Shelly gauge, the peak
discharge would not have attenuated as much and the differences in peak
discharges due to variations in 4 and 75 would be more persistent. In this in-
stance the peak discharge (cfs) would have attenuated to about 350,000 rather
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than 67,000 and the differences in peak discharges at mile 59.5 would have
been about 27 per cent, as opposed to less than 5 per cent for the actual wide
valley.

Computed peak elevations compared favourably with observed values. The
average absolute error was 1.5 ft, while the average arithmetic error was only
—0.2 ft. The computed travel time of the flood wave was compared with
observed values at the locations of the discharge measurements; they differed
by less than 10 per cent.

A typical simulation of the Teton flood involved 78 Ax reaches, 55 h of pro-
totype time, and an initial time step (A¢) of 0.06 h which was automatically
increased gradually to 0.5 h as the wave propagated downstream and natural
dispersion increased the time of rise. Such a simulation run required only 19 s
on an IBM 360/195 computer system.

14.22 A VIEW TOWARDS FUTURE DIRECTIONS IN CHANNEL
ROUTING

The hydrological modeis (especially the Muskingum—Cunge model) wiil
continue to be much used, particularly as components of precipitation-runoff
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catchment models for routing overland flow and channel flow associated with
the network of headwater streams which feed larger, more mild sloping collec-
ting streams. Therefore it is important that the strengths and limitations of the
simplified models be set forth and their relationship to other routing models,
especially the compiete models, be understood through analyses similar to those
by Cunge (1969), Miller and Cunge (1975), Ponce et al. (1978), and Koussis
(1978, 1980). The analysis should quantify a model’s characteristics in
terminology familiar to hydraulic engineers.

It appears that the trend for increasing computational speed and storage
capabilities of both large and small computers will be sustained throughout the
1980s. Also, the accessibility to such computational resources will become
more commonplace and economically feasible to both large and small agen-
cies, universities, and engineering consulting firms. For these reasons, and
their great range of applicability, flood routing models based on the complete
Saint-Venant equations will continue to receive much attention from model
developers and increasing use in the engineering community. Since the implicit
dynamic models are the most promising of the complete hydraulic models for
many flood routing applications due to their superior computational
efficiency, many future improvements will likely be associated with this type
of model. Some future improvements may include the following: (1) Develop
an improved one-dimensional modelling of meandering rivers with short-
circuiting floodplain flow and large diffcrences between channel and floodplain
properties such as hydraulic roughness and wave celerity; some effort in this
area has been made by Radojkovic (1976), Fread (1976), Tingsanchali and
Ackermann (1976), and Weiss and Midgley (1978). (2) Analysis of effects of
nonlinear terms in the Saint-Venant equations on the stability and accuracy of
implicit solution algorithms. (3) Develop manual and /or automatic smoothing
techniques to overcome nonlinear instabilities due to rapid variations of cross-
sectional properties with elevation and distance along the waterway.

A significant area of general improvement consists of expanding flood
routing models to account for significant effects of bridges, breached or over-
topped levees, ice covers, ice jams, flow exchanges with groundwater aquifers
due to bed and bank seepage and floodplain infiltration, and bed elevation and
bed roughness changes caused by sediment transport. There exists a large body
of knowledge in each of these areas; however, the incorporation of this into
flood routing models has not received enough attention. Some work in this
area has been done, e.g. Chen and Simons (1975) and Ponce et al. (1979) con-
cerning bed elevation changes due to sediment transport; Pinder and Sauer
(1971), Freeze (1972), Hall and Moench (1972), Cooley and Westphal (1974),
and Pogge and Chiang (1977) concerning the flow exchange between the water-
way and ajacent aquifer; Uzner and Kennedy (1976) concerning ice jams; and
Balloffet (1969), Cunge (1975b), Fread (1978, 1980) concerning effects of
levees, bridge/fembankments, and other man-made structures.
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Calibration of flood routing models is most essential for good resuits. The
calibration process for diffusion and dynamic hydraulic models when applied
to a complex system of waterways is often time-consuming and requires con-
siderable experience. There is a need for the development of objective calibra-
tion methodologies which may be trial—error and /or automatic, e.g., Yeh and
Becker (1973), and Fread and Smith (1978).

Flood routing models should be developed having a modular design. This
will permit convenient selection of various combinations of external and
internal boundary conditions permitting the same mdoel to be used for a wide
range of applications.

There is aiso a need for the development of updating techniques to improve
real-time simulation of unsteady flows such as in flood forecasting.
Approaches include the use of filter theory, e.g., the Kalman filter technique
(Chiu and Isu, 1978).

Automated data processing techniques are needed to allow the inexpensive
and rapid development of the cross-section and roughness parameters of the
hydraulic-type models. The sources of data should include remote sensing as
well as conventional on-site surveys and measurements (Lai er al., 1980).
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