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A Hydrologically Useful Station Precipitation Model
2. Case Studies
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A physically based model of precipitation at a point, developed by the authors in an accompanying
paper, is used to make rainfall and snow predictions at locations in the United States and Venezuela. The
model is utilized in off-line and real-time modes. The latter involves the use of a Kalman filter. Results
indicate that the parameterization suggested here is quite robust, comparing favorably with locally
calibrated linear regression alternative models. Ideas for future work are given.

INTRODUCTION

In an accompanying paper, Georgakakos and Bras [this
issue] developed a rainfall model based on a simplified formu-
lation of cloud physics. The model considers the atmosphere
as a reservoir of moisture. The outputs from the reservoir are
small hydrometeors blown off the top of the clouds by ascend-
ing winds and those hydrometeors large enough to counteract

updraft velocities and exit at cloud bottom. Input to the reser-
~voir is the pseudo-adiabatic condensation resulting from
moisture-laden air cooling while rising through the atmo-
sphere. The state equation describing the system is given by
Georgakakos and Bras [ this issue] as

ax

=7 =S a) — hu, a)X 1
where X is the liquid water content in the cloud system. The
nonlinear function f(u, a,) represents moisture input. The func-
tion h(u, a,) is also nonlinear in variables u and a, but acts
linearly on the state X. The vector of meteorological inputs u”
is

u” = [T5, po. T3] @)

where T is ambient air temperature at ground level, p, is the
ground-level pressure, and T, is the dew-point temperature,
also at ground level. There are three main parameters, includ-
ed in vectors a; and a,

a," = [p, v] ©)
aOT = [pv v, C] (4)

where p, is pressure at the top of the cloud, v is updraft wind
velocity, and c is the inverse of the average hydrometeor diam-
eter, a parameter of the particle distribution function.

The output at cloud base suffers evaporation before reach-
ing the ground as precipitation. Georgakakos and Bras [this
issue] show that this can be represented by

P = ®u, a,)X ()]

where @(-) is a nonlinear function of u and a, acting linearly
on the state X.
Equations (1) through (5) form a linear system of determin-
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istic equations. It is possible to hypothesize errors in the state

dynamics, in the input variables as well as in the precipitation

equation. If such errors are taken as additive, the system be-

comes a classic stochastic differential equation formulation,
dX(t)

7 =f(ll, ar, t) - h(ll, ap, t)X(t) + F(t)W(t) (6)

P(k) = ®(u, a,, k)X (k) + V(k) )]

where k is a time index, t = kAt. The term T'()W(t) is a con-
tinuous stochastic error with zero mean and variance density
Q(t) such that

Q0o — 7) = E[L(OW )T ()W (r))]

In the above, d(¢) is the Dirac delta function. The error V(k) in
(7) corresponds to a discrete precipitation measurement error
with zero mean and variance:

_ R(k) k=1
E[V(kv ()] = {0 K1

The input error component of Q(t) and R(k) is additive and
is computed by linearization of the model f(-), h(-), and ®(-)
functions with respect to the input u. The details of the formu-
lation are given in Georgakakos and Bras [1982b].

Given the stochastic system of (6) and (7), it is possible to
use the continuous-discrete Kalman filter [Gelb, 1974] in
order to combine noisy state dynamics and observations in
making predictions of the future. The filter, in this case, takes
the form

Prediction
dX X
d("[rh) =f(“, aj, T) - h(“s a,, I)X(Tlt) (8)
) .
_% = h(u, a,, T)Z(Tlt) + Z(ﬂt)h(u, a,, 7) + Q(1)
)
Update
Rkl = X (Klk — 1) + KHILPK) — 0w, a0, X (klk — 1]
(10)
Ykl = [1 — K(K)D(u, ag, Ik — 1) (1)
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TABLE 1. Storm Data Statistics 1 TABLE 3. Storm Data Statistics 3
Average Accumulated Cross-Correlations to Precipitation Rate
Storm Precipitation Rate, Precipitation, Storm
Group mm/h mm Group T, Po T; T,
1 2.59 259 1 —0.066 0.087 0.170 0.086
2 1.585 95 2 0.315 —0.101 0.392 0.347
3 0.950 62.7 3 0.185 0.204 0.340 0.283
4 2.193 131.6 4 0.253 —-0.228 0.337 0.303
5 1.831 183.1 S —0474 0.161 —0.394 —0431

K(k) = Y(kik — 1)®(u, a,, k)
- [®(u, 2y, k)Y (kIk — 1)®(u, ag, k) + RK)] ™ (12)

Equations (8) through (12) need initial conditions ). (0j0)
and X(0|0) to initiate the iterative solution. In the equations,
X(z|t) stand for the best estimate of the state at time 7 given
information up to time ¢. The variance of estimation is simi-
larly given by Z (z]t). Predictions can be made by integrating
(8), starting from the last updated estimate of the state. Inte-
gration of (9) yields the variance of the prediction. In order to
make predictions and integrate (8) and (9), values of inputs T,
Po» and Ty are required, they are obtained by observation or
prediction. Similarly, the parameters p,, v, and ¢ must be deter-
mined. Therefore, before going into particular examples to
illustrate the prediction capabilities of the model, the paper
will address the model parameterization and the nature of its
inputs.

PRECIPITATION MODEL PARAMETERS

The following have been identified as model physical pa-
rameters: the vertically averaged updraft velocity in the unit
area column, v; the terminal pressure level of the column, p,;
and the average water equivalent particle diameter 1/c at the
cloud base. It is desirable to express the model equations in
terms of parameters that are storm invariant so that robust
parameter estimates can be obtained.

Updraft Velocity and Terminal Pressure Parameterization

Work by Sulakvelidze [1969] indicates that v obeys a law of
the type

v=¢,(c, AT)'? (13)

where

AT=T,— T’ (14)

In the previous equations, ¢, is a constant parameter, c, is
the specific heat of dry air under constant pressure (Joule/
(kg °K)), T,, is the cloud temperature (°K) at a certain level p’
(mbar) assuming pseudo-adiabatic ascent and T;’ is the corre-
sponding ambient air temperature (°K). The quantity &, is
analogous to the ratio of kinetic to thermal energy per unit

mass of ascending air at the level p’. Therefore, ¢, is dimen-
sionless.

Due to the difficulty of obtaining radiosonde data in real
time, T, is taken as the temperature at level p’ that results
from dry-adiabatic ascent. The pressure level p’ is taken where
the updraft velocity is equal to the height-averaged v. Given
the assumed vertical distribution of updraft velocity in Figure
2 of Georgakakos and Bras [this issue]:

1
P =p—; (.~ (15)
with p, and p, defined as the pressures at the cloud base and
cloud top, respectively.

The temperatures T," and T,, obey the constant-adiabat and

pseudo-adiabat equations (7) and (16) in Georgakakos and

Bras [this issue]
T0 3 1 '0.286
Dg0-286 (Z P+ 2 p‘>

Tm@)""“ exp {um- WTo p')} _o. @

T = (16)

and

¢, T,

p

There is then an implicit relationship between p, and v.
Independently, and based on observations of the devel-
opment of storm clouds, another equation relating p, and v is
suggested. It is based on the well-known fact that the stronger
the updraft, the more vigorous the storm cloud development
and, consequently, the lower p, is. However, the value of p,
also depends on the past history of the storm. Thus as the
storm persists for several hours, even for low updraft veloci-
ties, p, is expected to be relatively low (e.g., in precipitation
processes from stratiform clouds). Since no information of the
lifetime of the storm system before reaching the drainage basin
boundaries is assumed, the new p, versus v relationship is

parameterized as follows:
— 1
D: Di - (18)
e —p l+e3v

where p, is the lowest value that p, can attain, and ¢, and ¢,
are constant parameters.

TABLE 2. Storm Data Statistics 2

Coefficient of Variation

Skewness Coefficient

Storm

Growp T, p T, T, P, T, P, T, T, P,
1 0.005 0008 0007 0006 1066 —0216 —0710 —1.106 —0460 1.691
2 0.002 0007 0.003 0002 1157 0.139 1.125 —-0578 —0467 1.303
3 0.005 0.009 0006 0005 1266 —0.489 0746 —0547 —0483 2926
4 0.012 0009 0011 0011 1418 1.707 —-0.614 1.205 1.590 3.061
5 0012 0002 0010 0010 1.609 —0.141 —-0.034 —-0.221 —0.198 253




GEORGAKAKOS AND BRAS: STATION PRECIPITATION MODEL: 2

TABLE 4. Storm Data Statistics 4: Group 1 Autocorrelations

Lag, hours
Variable 1 2 3 4 5 6
T, 0.928 0.840 0.738 0.626 0.513 0411
Po 0.976 0.945 0.908 0.867 0.823 0.775
T; 0.914 0.814 0.706 0.611 0.525 0.460
T, 0.928 0.837 0.746 0.656 0.554 0.473
P 0.641 0.441 0.313 0.188 0.066 0.031

Parameter p, can be set equal to the pressure value at the
troposphere-stratosphere boundary, since very few storms
penetrate into the stratosphere. That is about p, = 200 mbar.
Parameter ¢, has dimensions of pressure and depends on the
history of the storm before it reaches the basin boundaries.
Parameter ¢; has dimensions of inverse velocity and controls
the p, versus v relationship. Note that as v tends to zero, p,
tends to ¢,, and as v tends to infinity, p, tends to p,, in agree-
ment with the qualitative arguments described above. Ge-
orgakakos and Bras [1982b] present a sensitivity analysis of
the implicit set of (13) through (18) with respect to the parame-
ters ¢, and ¢; and the physical quantities v and p, Those
results can be used for initial parameter estimation when ob-
servations of cloud top pressure or height are available.

Parameterization of Average Hydrometeor Diameter at Cloud
Base T

Several processes contribute to determine the parameter c.
Based on past work, Pruppacher and Klett [1978] identify as
most important: the condensation, the collision coalescence,
and the collisional breakup of the larger particles. They indi-
cate that the stronger the updraft velocity, the larger the
number of the larger particles. That implies increasing the
average hydrometeor diameter (£, see Georgakakos and Bras
[this issue]) as v increases. In addition, based on theoretical
work, they suggest that even a mild updraft (e.g., of v equal
to 0.10 m/s) has a pronounced effect on the particle distri-
bution. For purposes of this work it is assumed that c is

275.6
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solely determined by v from a relationship of the type
1
—=g,v* (19)
c

where ¢, and k are constant parameters. The dimensions of
¢, are s'm! 7P, while k is dimensionless.

In summary, the storm invariant model parameters are ¢,
&,, €3, €4, and k. Also needed are the value of the ratio of the
upper cloud inverse mean particle diameter to that of inverse
mean particle diameter at the bottom of the cloud, y, and the
parameter f of the updraft velocity distribution which is the
ratio of the updraft velocity at the top or bottom of the
cloud column to the height averaged updraft velocity [see
Georgakakos and Bras, this issue].

MOoDEL INPUTS

One of the main arguments for the proposed model is that
its inputs are readily available variables that lend themselves
to statistical analysis and predictions. To illustrate the above
point, data from eight storms in the Boston, Massachusetts,
area (Logan airport) and three storms in Tulsa, Oklahoma
(International airport) were studied. The storms included con-
vective line storms, a tropical storm, large low-pressure centers
of persistent rainfall northeasterlies, snowstorms, and thunder-
storms with long dry periods in between. Georgakakos and
Bras [1982b] describe the storms in more detail. In order to
facilitate analysis the storms were divided into five different
groups. Group 1 was a convective storm and a tropical storm
(Daisy) in Boston for a total of 100 hours of rainfall. Group 2
was a 60-hour-long cyclonic storm in Boston. Group 3 con-
sists of three winter snowstorms in Boston for a total of 66
hours. Group 4 includes two heavy northeasterlies over
Boston for a total of 60 hours of heavy rainfall. Three thun-
derstorms in Tulsa, Oklahoma, form the 100-hour-long group
5. All groups included significant, sometimes record-setting
events. The average precipitation and accumulated precipi-
tation in all groups are shown in Table 1. All records consist-
ed of hourly data of T, py, and T as well as wet bulb temper-
ature T,, and precipitation P. The units of all data are degrees
Kelvin for temperatures Pascals (kg m~! s~2) for pressures,

273.7
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Fig. 1.

Dew-point regression hourly predictions (stars) vs. observations (solid line) for storm group 3.
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Fig. 2. Surface pressure regression hourly predictions (stars) vs. observations (solid line) for storm group 3.

and mm/hr for precipitation. Table 2 gives the coefficient of
variation and skewness of all variables in each group. Table 3
gives the correlation of precipitation with the temperatures
and pressure in each group. Table 4 shows the autocorrelation
up to lag 6 for the variables in group 1. Group 1 exhibited the
most significant autocorrelations of precipitation for all
groups. The lag 1 autocorrelation of precipitation for group 2
was 0.408; for group 3, 0.6; for group 4, 0.372; and for group
5, 0.609. Group 1 also had the slowest decay of the precipi-
tation autocorrelation. Georgakakos and Bras [1982b] give the
complete set of results. The statistical analysis yields the fol-
lowing:

1. The scale of fluctuations of the precipitation variable, as
it is expressed by the coefficient of variation (ratio of standard
deviation to the mean), is at least two orders of magnitude

16

greater than those of the temperature and pressure variables
for all storm groups.

2. Strong positive skewness is characteristic of the precipi-
tation rate. The skewness coefficient of the other variables
were both negative and positive.

3. Low cross correlations of the temperatures and of the
pressure to the concurrent hourly precipitation rate were ob-
served, ranging from 0.066 to 0.474 in absolute value. This
highlights the difficulty of using the temperatures and pressure
as explanatory variables in a linear regression for the precipi-
tation rate prediction.

4. Characteristically high lag-1 (1 hour) auto correlations
were obtained for the temperatures and the pressure variables.
They ranged from about 0.8 to about 0.98, suggesting that the
current value of those variables contains considerable amount

(MM/HOUR
11

PRECIPITATION
5

%D 55 a0
TIME-STEP NUMBER

Fig. 3. Precipitation rate hourly predictions (stars) based on linear regression model vs. observations (solid line). Storm
group 1. Model does not include lagged precipitation variables.
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Fig. 4. Precipitation rate hourly predictions (stars) based on the linear regression model vs. observations (solid line).
Storm group 1. Model includes lagged precipitation variables.

of information on their value 1 hour later. Therefore, simple
linear regression predictors can be used to forecast those vari-
ables at least for 1 hour lead time. In some cases, (groups 1, 2,
and 5) the correlations are of a high value, even for lags of 6
~hours (up to about 0.77). In group 3, the snowstorms group,
correlations dropped relatively fast with lag.

5. Autocorrelations of the precipitation rate were lower
than those of the other variables for all lags and for all groups.
One hour autocorrelation lags ranged from a value of about
0.6 (groups 1, 3, and 5) to a value of about 0.37 (group 4). The
auto correlations dropped fast at higher lags and became
negative in some cases (groups 2 and 4).

6. A variety of intrinsic statistical characteristics can be
observed for the various groups. Therefore, none was con-
sidered redundant for the purposes of the precipitation model
tests. Most importantly, this indicates that the optimal param-
eters of linear, purely statistical, predictors of those variables
based on past values of the same variables, would be calibra-
tion period dependent. This holds true, especially when predic-
tions of the precipitation rate are sought.

7. No significant difference of statistical character was ob-
served between Boston and Tulsa storms. The relatively

5
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strong negative cross correlation of the temperatures to con-
current hourly precipitation rate in Tulsa hold some promise
for linear regressions at this site.

The use of simple linear predictors of the temperature and
pressure variables is illustrated in the next two figures. Figure
1 displays plots of the observed (solid lines) hourly dew-point
temperature together with the corresponding 1-hour lead time
predictions (stars) for the snowstorm group 3. This is the
worst case in terms of dew-point prediction among the differ-
ent groups. Analogous plots are shown in Figure 2 for the
surface pressure of group 3. Again, shown is the worst case
among all the different groups. The regressions had five ex-
planatory variables and a constant. The independent variables

~ were the lag-1 value of the dependent one and the lag-1 value

of the other four variables. It must be stressed that each re-
gression was the best least square fit for the particular record.
Variation of optimal parameters for different calibration
periods is expected. The magnitude of the standard errors
indicates large parameter uncertainty for some of the explana-
tory variables. Nevertheless, the behavior of the models is
good, which indicates potential predictive power, as implied
by the observed high correlations (Table 4).

€4

65xi0° 82xi0°  10* [M]

04

3xl0-3—
6x|0_3 b
8.9x10 -

1.2x10 2
€

| -
I‘t'ntIO2
Fig. S.

Absolute proportional average error (E,). Storm group 2. Contour values: 1 = 0.24, 2 =0.73, 3 = 1.21, 4 = 1.70,

5=218.
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Fig. 6. Proportional standard error (E,). Storm group 2. Contour values: 1 = 0942, 2 = 0.948, 3 = 0.954, 4 = 0.960,
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The potential of a linear regression in predicting precipi-
tation with 1-hour lead is illustrated in Figures 3 and 4, using
group 1 as example. Georgakakos and Bras [1982b] give simi-
lar results for all other groups. It must be stressed that each
group is fitted with the best possible regression equation.
Figure 3 is the result of a regression with concurrent time
temperatures and pressures as explanatory variables. The re-
gression of Figure 4 also includes the lag-1 precipitation as an
explanatory variable. The fit of Figure 3 lacks the large fluctu-
ations about the mean that characterizes the observed values.
Due to the unconstrained nature of the regressions, unrealistic
negative values of precipitation rate were also predicted. The
fit of Figure 4 shows considerable improvement over the pre-
vious result, although some prediction delays are still ob-
served. Some negative values were also predicted. The regres-
sions of the various groups exhibited considerable difference in
optimal parameters with high standard errors of estimation.
This makes the generalization of any one equation impossible.

! CALIBRATION OF PRECIPITATION MODEL

For purposes of this paper and as a first step toward the
testing of the precipitation model developed, uniform vertical
velocity profile with height is assumed. Similarly, the distri-
bution of the parameter ¢ (inverse average level diameter) with
height was taken to be uniform. Under those assumptions,

fo} 3xlO

47x|0

0.966.

B =1and y = 1 (equation (29) and Figure 2, Georgakakos and
Bras [this issue]). No dependency of the parameter ¢ on the
updraft velocity was considered, k = 0 (equation (19)). This
implies constant average level diameter for all storms and at
all times. The value of parameter &, (equation (18)) was taken
equal to 1 s/m, which is the order of magnitude of the average
updraft velocity v. Parameter ¢, (equation (18)) was initially
set at the 700-mbar level. Therefore, the cloud top was allowed
to vary from the level of 700 mbar to a level of 200 mbar for
all cases. For all the model runs to follow, the initial con-
ditions X, of the state (mass of condensed liquid water equiv-
alent in cloud storage) was taken equal to 1 kg/m?2. With those
values for B, y, &3, &5, and X, the model was used with input-
output data to determine the values of the remaining two
parameters: ¢, (equation (13)) and ¢, (equation (19)). Storm
group 2, consisting of only one storm, was selected as the
calibration period.

Three model performance criteria were considered. The
average error in predicting the precipitation rate, the residual
standard deviation, and the cross-correlation coefficient E,
between the model prediction and the observations. The first
indicates the extent to which the model produces the volume
of precipitation observed. The second is the standard least
squares criterion. The third was included to indicate unde-
sirable lags between observations and predictions. Its value

-4
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Fig. 7. Cross-correlation coefficient of observations and predictions (E

3). Storm group 2. Contour values: 1 = 0.351,

2 =10.344,3 = 0.337,4 = 0.330, 5 = 0.323.
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Fig. 8. Deterministic precipitation model hourly predictions (stars) vs. observations (solid line). Storm group 1.

ranges from — 1, for worst performance, to 1, for perfect per-
formance. Normalized quantities for the first and second cri-
teria were used for calibration. Those were the absolute pro-
portional average error E, and the proportional standard
error E,. E, is obtained by dividing the residual mean by the
observed mean precipitation rate and taking the absolute
value of the ratio. Perfect performance leads to a value of E;
equal to zero. E, results by division of the residual standard
deviation with the observed precipitation rate standard devi-
ation. Perfect performance yields a value of E, equal to zero.
Figures 5 to 7 present contours of E,, E,, and Ej, respectively,
in the space of the parameters ¢, (ordinate) and ¢, (abscissa).
Parameter ¢, ranged from 10 % to 1.5 x 10~2, while parame-
ter &, ranged from 10”° m to 10™* m. Note that given k = 0,
&, is the average diameter assumed constant.

Examination of Figures 5 to 7 reveals that different parame-
ter sets optimize the different criteria for the selected calibra-
tion period. Thus good least squares performance does not
gudrantee equally good performance in the cross-correlation
coefficient E;.

Notable also is the fact that changes in the value of one of
the parameters result in drastic changes in the gradient of the
performance index E, with respect to the other parameter.
Thus a value of about 2 x 1073 for ¢, gives regions of very
mild E, gradient with respect to &,. For ¢, near 9 x 1073,
sharp changes in E, occur by changing &,. Multiple optima
occur for E; and possibly (for high values of ¢,) for E,. Index

TABLE 5. Deterministic Pi’ecipitation Model Residual Statistics for
Storm Groups 1 to 5

Group
Statistic 1 2 3 4 5
Mean, mm/h 1.09 —-0.23 028 0.82 031
Standard deviation, mm/h 249 1.701 110 291 2.68
Lag-1 autocorrelation 0.56 0.46 057 041 047
Lag-2 autocorrelation 0.34 0.22 036 020 031
Lag-3 autocorrelation 0.21 0.12 026 0.16 013
Regression residual 2.64 1.63 1.08 294 260

standard deviation

E, was used to decide between these optima. For example the
depressions in the lower left part of Figures 5 and 6 were
excluded due to their lower value of E,.

Even with the exclusion of the lower left part of all figures
as a possible optimum, a choice between the parameter sets
that optimize the different performance indices has to be
made.

E, was heavily weighted due to the importance of preserv-
ing total precipitation volume and due to its sensitivity to
parameter ¢,. The region of the limited ¢,, ¢, space that gives
both good performance with respect to E, and to E, is the
one defined by &, in the range 1.5 x 1073 t0 2.5 x 10" * and ¢,
in the range 3 x 1073 m to 5.5 x 107° m. A choice of ¢; = 2

x 1073 and s, = 4.5 x 10™° m in the prespecified region was
arbitrarily made. ;

The sensitivity to the value of the ill-defined constant C, for
snow diffusion losses [see Georgakakos and Bras, this issue,
equation (52)] was studied for the case of the snowstorm
group 3. Two values of c,, the one obtained for rain (7 x 10°
kg/(m3s)) and the one estimated for snow (1.4 x 10° kg/(m3s))
were examined. Contours of E; and E, for &, in the range
107% to 1.3 x 1072 and ¢, in the range 1.2 x 1075 to 10™*
were obtained for both values of C,. No significant changes
are observed among the different plots corresponding to E;
and E, other than a shift to a higher optimal value of ¢, when

.C, changes from 7 x 10° to 1.4 x 10° kg/m?s). Choosing a

value of ¢; = 1.4 x 10° for snowstorm, group 3, leads to pa-
rameters ¢; and &, similar to the ones already obtained using
group 2 (rainfall) data.

TABLE 6. Deterministic Precipitation Model Least Squares
Performance Measures for Storm Groups 1 to 5

Group
Description 1 2 3 4 5
Efficiency coefficient 002 0.10 012 003 0.15
Determination coefficient 0.19 0.12 017 013 0.16
Persistence coefficient -0.39 023 -0.12 023 -010
Extrapolation coefficient 044 0.71 0.55 0.70 0.54




1604

16

GEORGAKAKOS AND BRAS: STATION PRECIPITATION MODEL: 2

PRECIPITATION (MM/HOUR?

105

TIME-STEP NUMBER

Fig. 9. Stochastic precipitation model hourly predictions (stars) vs. observations (solid line). Storm group 1.

In summary, C; was taken as 1.4 x 10° for snow group 3
and 7 x 10 for all rainfall groups. Parameters ¢, and ¢, took
values of 2 x 1073 and 4.5 x 1075, respectively, for all groups.

REesULTS: THE CALIBRATED RAINFALL MODEL PREDICTIONS

The precipitationn model developed in Georgakakos and Bras
[this issue] was used to forecast the hourly precipitation rate
for all storm groups, with the parameters defined in the pre-
vious section. The input at all times was equal to the current
observed value for the meteorological parameters. Per-
formance is judged by the values of the following measures:
residual mean, residual standard deviation, lag-1 correlation
coefficient of residuals, coefficient of efficiency, coefficient of
determination, coefficient of persistence, coefficient of extrapo-
lation, and comparison to the regression runs discussed in a
previous section which used the same input and were locally
calibrated for all storm groups. ,

The residual at each time is equal to the difference between

the predicted precipitation rate and the observed one. The
coefficients of efficiency, determination, presistance, and ex-
trapolation were introduced in hydrologic forecasting by Kita-
nidis and Bras [1980]. The coefficient of efficiency is a measure
of the residual squared error as it compares to the squared
error of the quantity to be forecasted. A perfect value is 1.
Negative values indicate large residuals relative to the scale of
the observations. The coefficient of determination compares
the residual squared error to the squared error of the observa-
tions after the linear trends have been removed from the re-
sidual timie series by regression. Comparison of the coefficients
of efficiency and determination allows assessment of the possi-
ble model systematic errors. The coefficient of persistence
compares the model prediction to a simple model that predicts
the previous observation. Thus negative values of this measure
indicate that in the least squares sense the model is worst than
no-model persistence. The coefficient of extrapolation com-
pares the model predictions to the observations of a linear
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Fig. 10. Stochastic precipitation model hourly predictions (stars) vs. observations (solid line). Storm group 2.
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Stochastic precipitation model hourly predictions (stars) vs. observations (solid line). Storm group 3.

Fig. 11.

extrapolator using the latest observations (in this work the
latest two).

The residual mean multiplied by the number of storm time-
steps gives the accumulated volume error in predicting pre-
cipitation.

Figure 8 shows the 1-hour lead forecasts, using the rainfall
model as a deterministic relationship, of the precipitation rate
(mm/hr), in stars together with the corresponding observations
in solid lines for storm group 1. It can be compared to Figure
3, a regression fitted exclusively to group 1, which uses Ty, p,,
Ty, and T, as explanatory variables.

Table 5 gives the residual mean, standard deviations, and
three autocorrelation coefficients for each storm group togeth-
er with the residual standard deviation of the regressions dis-
cussed previously. Keep in mind that those regressions were
calibrated to each group individually, therefore representing
the best possible linear fit. Table 6 gives the least squares
performance measures for each storm group.

Examination of Table 5 indicates that the deterministic

20

T T ¥
4 50 60 70

model performance, with parameters estimated only with data
of group 2, is comparable in the least squares sense, to the
locally calibrated regressions. In some cases, groups 1 and 4,
the precipitation model had better performance. The value of
the residual means of Table 5 implies that in all cases volume
preservation was satisfactory. The relatively high residuals
correlation values are indicative of possible improvement
when the precipitation model is later complemented by a filter.

The performance measures of Table 6 point to the low ef-
ficiency of the deterministic model. The difference between the
coefficient of determination and the coefficient of efficiency
indicate systematic errors in some of the predictions. Some
cases had negative persistence coefficients, implying poor per-
formance at a 1-hour lead forcast relative to a simple persist-
ence model. The extrapolation coefficient was large for most
storm groups indicating better performance than linear ex-
trapolation.

It should be noted that the precipitation model proposed
can predict the beginning and ending of the precipitation

PRECIPITATION (MM/HOUR)
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Fig. 12. Stochastic precipitation model hourly predictions (stars) vs. observations (solid line). Storm group 4.
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Fig. 13. Stochastic precipitation model hourly predictions (stars) vs. observations (solid line). Storm group 5.

based on the temperature and pressure input. Therefore, when
the forecasts of no rain or no snow are taken into consider-
ation for a continuous period of record, performance is con-
siderably improved.

Characteristic to all runs of the deterministic model is its
deficiency in predicting excessively high precipitation rates
while it does a rather good job in predicting the no rain
periods. This suggests the examination of other values of k, S,
and y than the ones selected in this calibration. The diffusion
losses part of the model seems to respond properly to ob-
served input.

The station precipitation model performance in a stochastic
feedback mode was studied next. The continuous-discrete ex-
tended Kalman filter in Gelb [1974, pp. 1887 was utilized as
outlined in the introduction. The input error standard devi-
ation for temperature and dew point were set to 1°K, while no
error was assumed for the pressure input. Zero correlation in
the errors of the different input variables was assumed. The
observation error standard deviation took the value 1
(mm/hr), while the model error spectral density was set equal
to 0.01 (kg/m??/s. This spectral density adds about
0.01 x 3600 = 36 (kg/m?)* to the state variance at each step
when the order of magnitude of X is about 10 kg/m?. Such a
high value of the model error spectral density was considered
necessary in order to avoid filter divergence. This initial state
standard deviation was 0.3 kg/m?. No sensitivity analysis was
performed for any of the filter parameters.

" Performance was judged as in the case of deterministic
model forecasts. Now, however, the filter predictions are com-

pared to the set of individually fitted regressions that use the
previous precipitation value. Figures 9 to 13 show the model
forecasts (dashed line) together with the corresponding hourly
precipitation rate (solid line).

Tables 7 and 8 give the performance statistics. Considerable
improvement is noted for all storm groups relative to the
deterministic model, as expected.

The values of the residual mean have all been reduced such
that preservation of precipitation volume is even more suc-
cessful in this case. Reductions of the standard deviations and
the auto correlations of the residuals confirm good filter per-
formance.

Comparison of the filter forecasts to the locally calibrated
regression forecasts (see also standard deviations in Table 7)
support the robustness and reasonableness of the storm inde-
pendence of the suggested rainfall model.

Considerable improvement (Table 8) in the efficiency mea-
sures is observed, relative to the deterministic case.

All persistence coefficients are now positive and the ef-
ficiency has risen an order of magnitude in some cases. Exam-
ples of the model performance for longer forecast lead times
using observed input are given in Tables 9 and 10. Model
forecasts up to a maximum lead time of 6 hours were con-
sidered for storm groups 1 and 5. The drop of efficiency is
more pronounced in the Boston data (group 1) than in the
Tulsa data (group 5). Increase of the persistence coefficient
from the low 1-hour lead time value to values of 0.48 and 0.57
supports the forecasting ability of the precipitation model.
Table 10 suggests that the stochastic model will have good

TABLE 7. Stochastic Precipitation Model Residual Statistics for Storm Groups 1 to 5
Group

Statistic 1 3 4 5
Mean 0.58 —0.15 0.104 0.49 0.06
Standard deviation 2.01 1.43 0.96 220 24
Lag-1 autocorrelation 0.058 0.01 —0.003 0.16 —0.12
Lag-2 autocorrelation 0.009 —-0.07 —0.058 0.07 0.09
Lag-3 autocorrelation 0.1 —0.05 0.04 0.10 —0.04
Regression residual 212 1.51 0.94 2.90 2.30

standard deviation
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performance with precipitation data from Tulsa for relatively
long forecast lead times.

RESULTS: MODEL GENERALIZATION TO CONDITIONS IN
VENEZUELA

The generality and robustness of the proposed rainfall
model was tested with storms in the tropical mountaineous
regions of Venezuela.

Initially, meteorologic data from station Macagua in the
Caroni River basin (tributary to the Orinoco River) was used
with the same parameters discussed previously, which were
calibrated with Boston data. The 1-hour predictions obtained
with the filtered model and using the latest observations of p,,
T,, and T; are shown in Figures 14 through 17. All per-
formance criteria were positive. Considering that there was
absolutely no calibration attempt, the results are surprisingly
good. The obvious problems are the delayed response and
peak, the underestimated peaks, and the persistent predicted
light precipitation early in the storm.

The first two problems can be immediately attributed to
known peculiarities of tropical storm behavior. First, clouds
may reach elevations well above the 200 mbar level assumed
here. Heights of 12 km and pressures of 100-150 mbar are
common. Similarly, the lowest cloud top pressure (g;) is prob-
ably above the 700-mbar level assumed, probably on the order
of 400 mbar. Second, updraft velocities are usually large, &,
should be larger. Third, the assumption of uniform mean par-
ticle diameter is not adequate. At least the mean particle di-
ameter should be higher. To investigate the previous argu-
ments the updraft velocity was increased by augmenting &,, to
0.24 x 10~2. The lowest cloud top pressure was set at 400
mbar. Although the particle size distribution remained uni-
form throughout the cloud profile, the inverse of the mean
particle size, ¢,, was increased to 0.8 x 10~%. Given the larger
parameter uncertainty, the standard deviation of the model
error was increased by a factor of 5 to 0.5. The new parame-
ters were used in predicting the storm shown in Figure 14. The
result is Figure 18. As expected a higher peak and better
timing is observed, an indication that calibration can indeed
be improved with simple physical arguments.

The problem of the apparent low persistent precipitation of
the beginning of the storm was traced to the effects of atmo-
spheric inversions. It was indeed confirmed that they existed in
those early morning periods. During these periods the atmo-
sphere is nearly saturated and T, ~ T,. Equation (1) will incor-
rectly predict an updraft velocity because it assumes a dry-
adiabatic cooling of the ambient air when in fact the temper-
ature profile corresponds to a very stable atmosphere. The
saturation conditions with a false updraft velocity leads to
precipitation. One way to solve this problem is to change the
parameterization of updraft velocity. Possibilities include
making it dependent on time of the day (inversions usually
occur early in the day in the tropics) or direct observations.

TABLE 8. Stochastic Precipitation Model Least Squares
Performance Measures for Storm Groups 1to 5

Group
Description 1 2 3 4 5
Efficiency coefficient 0.36 0.33 028 0.38 0.28
Determination coefficient 041 0.33 0.35 0.46 0.30
Persistence coefficient 0.10 043 0.08 0.50 0.07
Extrapolation coefficient 0.63 0.78 0.63 0.81 0.61
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TABLE 9. Least Squares Performance Measures for Storm
Group 1

Lead Time, hours

Description 1 2 3 4 5 6
Efficiency coefficient 036 0.17 008 004 002 0.02
Determination coefficient 041 036 031 030 029 030
Persistence coefficient 0.10 026 033 040 047 - 047
Extrapolation coefficient  0.63 053 048 045 044 043

Maximum lead time: 6 hours.

Another promising alternative is to use simultaneous temper-
ature data from stations at different elevations as a surrogate
measuré of the temperature profile. Initial investigations indi-
cate that this latter approach may indeed work in the Caroni
River basin.

CONCLUSIONS AND RECOMMENDATIONS

A set of 11 storms of different type and severity from
Boston, Massachusetts, and Tulsa, Oklahoma, was the main
hourly data base for the tests of the precipitation model pre-
sented in Georgakakos and Bras [this issue] and parame-
terized in this paper. Several performance indices were used to
quantify behavior of the developed model. Thus mean, stan-
dard deviation and autocorrelation structure of the residual
process together with efficiency, determination, persistence,
and extrapolation coefficients were utilized. In addition the
model predictions were compared to the optimistic predictions
of linear regressions of same input calibrated for each storm
period separately. In contrast the physical model parameters
were manually calibrated with data from a single storm and
remained unchanged during all model tests.

Characteristic to all tests of the deterministic precipitation
model was inadequate simulation of high precipitation rates
and the successful prediction of the no-precipitation periods.

Improved model behavior was observed when the stochastic
formulation was used. The filter parameters were based on a
priori considerations and remained unchanged for all the sto--
chastic model runs. Again, the model predictions were com-
pared to locally calibrated regression model predictions with
rainfall in the last time step as well as meteorologic parame-
ters as explanatory variables. The high extrapolation coef-
ficients indicate superiority of the developed model over linear
predictors using the previous two precipitation rates. The low
autocorrelations of the residual process suggested near-
optimal filter performance.

Good stochastic model performance is also confirmed by
the positive persistence coefficients. Positive persistence short-
range predictions are rather difficult to attain [e.g., Kitanidis
and Bras, 1980].

TABLE 10. Least Squares Performance Measures for Storm
Group 5

Lead Time, hours

Description 1 2 3 4 5 6
Efficiency coefficient 028 026 0.18 034 022 021
Determination coefficient 0.30 037 033 040 030 0.30
Persistence coefficient 007 041 043 059 0.54 056
Extrapolation coefficient 0.61 0.60 0.55 045 035 035

Maximum lead time 6 hours
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Fig. 14. Stochastic precipitation model hourly predictions (solid line) vs. observations (dashed line). Macagua, Ven-
ezuela, storm data.

A valid concern is the relative merit of the model dynamics
and filter adjustments. Clearly, the filter is extremely respon-
sive to observations during the update phase. A search for the
best model error density should accompany model use. Ge-
orgakakos [1984] has, in fact, implemented such procedure.
Nevertheless, model dynamics are significant, even in this non-
optimal example. The following facts are evidence of this:

1. The model is not calibrated to individual events, yet
performs reasonably well.

2. Extended forecasts up to 6 hours lead time (Table 9) do
significantly better than a simple persistence model. This is a
very difficult and strict test.

3. Even at 1-hour lead predictions the dynamics are sig-
nificant. For example, in Figure 13 the model predicts a down-
turn in precipitation at time step 19, even though time step 18
was underestimated in the rising limb of the hydrograph.
Blind tracking of data would have adjusted upwards and pos-
sibly continue the rising trend in rainfall intensities.

Nevertheless, it has been confirmed in continuing work that

station
precipitation

the time constants of the rainfall model are short (on the order
of 1 hour). This implies that response is very dominated by
inputs (TO9 T:b Po)‘

No significant difference between the Boston and Tulsa
hourly forecasts was observed. Nevertheless, when the ex-
tended forecasts (up to 6 hours maximum forecast lead time)
performance coefficients were examined for storms of the two
locations, the Boston forecasts showed a much more pro-
nounced drop in efficiency with lead time. Efficiency was
almost constant for all the lead times for Tulsa.

The robustness of the model was confirmed when storms in
tropical Venezuela were reasonably predicted without recali-
bration. It was shown that model parameters would be signifi-
cantly improved by using simple physical arguments.

Automatic calibration methods of all the model parameters
should be used to establish optimal parameter values. The
maximum likelihood methodology [Restrepo-Posada and
Bras, 1982] and the unbiased sequential estimator in Ge-
orgakakos and Bras [1982a] are two possible alternatives. The

mm/hr
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Fig. 15. Stochastic precipitation model hourly predictions (solid line) vs. observations (dashed line). Macagua, Ven-
ezuela, storm data.
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Fig. 16. Stochastic precipitation model hourly predictions (solid line) vs. observations (dashed line). Macagua, Ven-
ezuela, storm data.

fact that there is only one state, permits the use of elaborate
parameter estimation procedures and many data sets. Caution
must be exercised, however, to avoid the local optima indicat-
ed by the parameter space maps presented in previous sec-
tions. There is no question, see Figure 8, that better calibra-
tion will lead to better performance in a deterministic mode,
particularly in handling high peaks. Improved calibration will
address some of the model dynamics versus filter issues men-

" tioned previously. During this effort, all parameters including
m, B, and y should be calibrated.

The calibrated model, complemented by a filter, should be
used with several data sets from different locations and for
different storms in a sensitivity analysis of the effect of the
filter parameters on model performance. The nonstationarity
of the model error should be examined in detail. Similarly, the
observation error structure needs examination. Related to this,
the theoretical framework in Sharon [1980] will be useful. The
extent to which the error in the input variables improves
model performance should also be evaluated.

Due to the physical interpretation given to the model com-
ponents, observations of cloud tops, upper-cloud divergence
from satellite images, droplet spectra, and updraft velocities
can considerably improve the stochastic model performance
when used in additional observation equations. Perhaps more
important will be observations of the model state (cloud mois-
ture) of the type described in Bunting and Conover [1976].

The low order of the precipitation model permits probabil-
istic forecasts based on the use of the Bayes law and initial
probability distributions of the model state. Formulations in
Ho and Lee [1964] can be used. The types of forecasts are
particularly useful in decision making.

Slight modifications in the model structure can be done to
incorporate the effect of the time variation of some parame-
ters. For example assume a one-parameter Markov model for
the time evolution of the average level diameter 1/c. Esti-
mating the additional parameter from storm data permits
evaluation of the resultant precipitation for varying initial
conditions for 1/c. This can be done in a filter framework with
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Fig. 17. Stochastic precipitation model hourly predictions (solid line) vs. observations (dashed line). Macagua, Ven-
ezuela, storm data.
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Fig. 18. Stochastic precipitation model hourly predictions (solid line) vs. observations (dashed line). Macagua, Ven-
ezuela, storm data. Model parameters recalibrated.

observations of the precipitation rate and possibly of other
physical quantities as described above. This type of research
can be valuable in assessing the effects of cloud seeding on the
precipitation rate in real time.
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