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A one-dimensional, physically based precipitation model is formulated. Particular emphasis is placed
on its utility for real-time river flow forecasting. Thus, the model is in state-space form, suitable for use
with modern estimation theory techniques, and it uses only operationally readily available, meteorologi-
cal variables as its input. Parameterization of the model components is based on well-established obser-
vations and theories on water vapor condensation, precipitation mechanisms, and subcloud evaporation
of falling hydrometeors. Model input consists-of ground level station temperature, pressure, and dew-
point temperature observations. The model predicts the spatially averaged, ground surface precipitation
rate in the characteristic area determined by the spatial scales of the input. The water equivalent mass
condensed in a cloud column defined by the characteristic area is the model state. Key physical parame-
ters in the formulation are the pressure at the cloud top, the height-averaged updraft velocity, and the
inverse of the average diameter of the hydrometeors at cloud base.

INTRODUCTION

Rainfall prediction with time leads of the order of hours or,
at most, days is the meteorologists’ and hydrologists’ dream. A
prediction would be very valuable in urban hydrology, where
basin response is so fast that effective rainfall prediction is the
only hope for advanced water resources systems control. In
larger, mostly rural basins, a few hours of accurate rainfall
input can translate to many more hours of valuable flood
warning time. This is best known by the National Weather
Service, where stream flow predictions are severely limited by
the availability of rainfall predictions at spatial and time scales
compatible with their river basin models.

A precipitation model is presented here which takes a first
step in satisfying some of the described needs. Model devel-
opment was directed by the following criteria and objectives:

1. The model should operate at spatial scales of the order
of a river basin.

2. It should be able to predict rainfall with at least several
hours lead time.

3. It should be simple enough to realistically operate in
real time and with reasonable computational needs.

4. The model form should allow updating, given precipi-
tation observations, using modern estimation theory concepts.

5. Model parameters should be clearly related to well-
defined physical behavior.

6. Inputs to the model should be easily measured and,
preferably, easily forecasted.

This last point is particularly important to the philosophy to
be presented, since it is crucial for the development of a model
that can be used in real time.

Past attempts at precipitation forecasting using probabil-
istic or statistical models [Johnson and Bras, 1980; Todini and
Bouillot, 1975] have been of limited success because the rain-
fall correlation structure is generally quickly decaying. Any
linear statistical procedure then has a hard time making pre-
dictions. Nevertheless, precipitation is nonlinearly related to a
series of meteorological variables, which in turn exhibit slowly
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decaying correlations and high cross-correlation. Their predic-
tion, using statistical techniques, is then feasible. As will be
seen, the precipitation model suggested here will depend on
ground station data of temperature (T;), dew-point temper-
ature (T,), and ground-level pressure (p,) as inputs. These are
easily measured variables and are presently well predicted by
statistical techniques like the model output statistics method
of the Techniques Development Laboratory of the National
Weather Service [Glahn and Lowry, 1972; Lowry and Glahn,
1976].

MODEL STRUCTURE

Following an old hydrologic concept, the storm cloud
system is considered a reservoir of condensed water. During
initial development, emphasis will be on a unit area cloud
column. Implied spatial dimensions of the development will be
discussed later. Figure 1 schematizes the unit area cloud
column, moving with horizontal velocity vector u, and defines
variables of interest. The center vertical axis of the unit area is
represented by coordinate vector r. Vertically, the cloud ex-
tends from elevation Z, to elevation Z, where the pressure
and temperature are given by p, T, and p, T, respectively.
Ground meteorological conditions are represented by T, po,
and T, which were previously defined.

Moisture I is due to the condensation of the vapor carried
by incoming air. The state of the cloud is the equivalent liquid
moisture content of the column X. A given amount of mois-
ture O, is blown off the cloud top by updrafts. Outflow at
cloud bottom is O,. The relative amounts of O, and 0, will
depend on the size of hydrometeors and their ability to
counteract updraft wind velocity v with their weight. The hy-
drometeors are distributed in size according to a function n(D),
where D is diameter. The cloud bottom output O, is trans-
formed to precipitation P after suffering a mass reduction due
to evaporation of the drops during the trip to ground level.

A conservation of mass statement of the above model defi-
nition would be

ax(t)

7 = 10— 040 = 0,0) 1)

where X(t) is the mass of liquid water equivalent in the con-
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Fig. 1. Schematic representation of the unit area column model
variables at time ¢.

GROUND

ceptual storage of the unit column; I(¢) is the input mass rate
due to the condensation of water vapor in the column at time
t; Oft) and Oyt) are output values of liquid water as pre-
viously discussed. Of interest for hydrological applications is
the ground level precipitation rate P(z).

The variables dependence on location r is not shown in
order to simplify notation. The task is to define I(£), O(t), O,(1),
and P(z) in terms of cloud physics. Because all quantities are
implicit functions of time, in the following, dependence on
time is not explicitly shown.

RATE OF MOISTURE INPUT [

The water mass supply of the vertical unit area column is
the moisture-laden inflowing air that rises through it. This
work assumes conservation of heat of the air masses as they
rise. There is no heat exchange between rising air parcels and
the ambient air. The parcels are warmed, however, by the
release of the latent heat of condensation when they are above
the cloud base. The relevant theory is well established in the
literature, and pseudo-adiabatic charts have been constructed
to facilitate the calculations. It is the purpose of this section to
derive an efficient numerical algorithm for the computation of
the condensed water mass rate input 1.

Assuming that the water content of a volume of air verti-
cally entering the cloud base per unit time will not leave the
unit area column from the sides, the input mass rate of con-
densate is given by

I=Aw-p,-v-dA ?2)

where p,, is the vertically (inside the cloud) averaged density of
moist air; v is the vertically averaged updraft velocity of in-
flowing air; dA is the unit area measure; and Aw is the change
in specific humidity (approximately equal to the mixing ratio)
in the inflowing air between cloud bottom and cloud top; Aw
is in grams of moisture per gram of moist air.

The updraft velocity is assumed to vary as in Figure 2,
along the vertical, reaching a maximum v,_,, at the elevation
where the average of top and bottom pressures occurs. Its
values at the cloud top and bottom are equal to a portion g of
its vertically averaged value v. The value of v is the value of
the updraft velocity at the height defined by the pressure level

ps — %(Ps - pr)

The updraft velocity is possibly the most important model
quantity. As will be seen in a future section, it will be ex-
pressed (parameterized) in terms of readily available variables.

Condensation of Water Vapor

Moist, unsaturated air with temperature T, pressure p,,
and dew-point temperature T, is lifted in the storm. As it
ascends, it immediately adjusts to the pressure reduction with
height and expands. Given that the atmospheric moist air
follows closely the ideal gas law, it cools adiabatically. Since
the saturation vapor pressure is an increasing function of tem-
perature, and the saturation mixing ratio is an increasing func-
tion of the saturation pressure, at some point during its rise
the air becomes saturated. This is the lifting condensation
level (LCL). Further lifting will result in supersaturated air
(supersaturations up to 1% have been observed). However, the
excess vapor condenses onto the atmospheric nuclei, suspend-
ed in the air, to form minute water or ice particles. Within the
storm clouds, the air is saturated with water vapor.

Below the lifting condensation level, the air rises heat-
adiabatically with constant potential temperature. Above the
level of condensation, the rising air is warmed by the latent
heat of condensation, and it is assumed that it follows the
pseudo-adiabatic rate, with constant equivalent potential tem-
perature, up to the level of pressure p,, where the condensation
ceases.

It is now necessary to find the mass of liquid water equiva-
lent condensed per unit mass of dry air when an air parcel
with initial temperature T, initial pressure p,, and dew-point
temperature T, is lifted up to a terminal pressure level p,.

The initial mixing ratio w, in grams per gram of dry air is

VﬁzB'V
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Fig. 2.. Updraft velocity variation with pressure: p,, lifting con-
densation level pressure; p,, cloud top pressure; v, height-averaged
updraft velocity. -
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known from the input variables T; and p,:

S’

Wo = WiT, po) = 0622 =00 ()
where wy(T}, p) is the saturation mixing ratio at temperature
T, and pressure p,, and e(T}) is the saturation vapor pressure
over a plane surface of pure water.

The saturation vapor pressure e, is a nonlinear convex func-
tion of temperature (solid lines in Figure 3). It is convenient to
fit a nonlinear function of the type

e(T) = A, (T — 223.15)*% 4
since
cp/R =35

where R =287 J kg~ ' °K ™! is the gas constant and c,, is the
specific heat at constant pressure (c, = 1004 J kg™ ! °K ™).

A value of 8 x 10™% (kg-m~1-s72-°K~3-) for 4, gives the
fit shown in Figure 3 (dashed line). One can see that equation
(4) provides an excellent fit to the observed data [Mason,
1971, p. 615] for values of temperature in the range
—30°C < T < 20°C (where a degree Kelvin °K is °C +
273.15).

From (3) and (4) it follows that since p, > e(T;)

. 3.5
wo = 0.622- A (T, = 22319 (5)
Po

Similarly, the saturation mixing ratio at temperature T;, and

pressure p, (i.e., if the air were saturated at Ty) is

A; (T — 223.15)33
Do

If wy < wy(Ty, po)—equivalently, if T; < T,—the air is not
saturated. During the ascent, the temperature and pressure
will follow the dry adiabat that originates at T, p,. When the
air becomes saturated, the pseudo-adiabat, passing through
the level at which saturation was first reached, will be followed
for the rest of the ascent.

If wy = wy(T,, po)—equivalently, if T, = T;—the air is satu-
rated, and pseudo-adiabat will be followed throughout the
rising.

During the dry-adiabatic rising, the potential temperature 8
of the air stays constant at the value given by the Poisson
equation, which implies the following temperature T and pres-
sure p change along a constant temperature 6 adiabat [Wall-
ace and Hobbs, 1977}

1
T = (p 0_286> -0- p0‘286 (7)

since R/c, = 0.286. The nominal pressure p, is taken as 10° kg
m~ls72,

The dry-adiabatic rising continues until the air parcel be-
comes saturated. The point (T, p,) where this takes place is the
solution of the system of equations (7) and

0.286
Wo P
T —-22315= ——— 8

(A1~0.622) ®

Ws(’Eh pO) =0.622-

(6)

Equation (8) has been inferred from (3) and (4). The system of
equations leads to

0.286 0.286
bs [ PnWo —
(p"> [ < e 0622) +9] 223.15 ©)
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Fig. 3. Observed (solid lines) saturation vapor pressure over a
plane surface of water (e, (T)) or ice (e,(T)) vs. temperature T. Fitted
e(T) is dashed line.

By virtue of (5) and (7), with T, p substituted by T, p, the
term in brackets in (9) becomes

P 0.286 )
Ji(To, po, Ty) = (p—) (T — Ty + 22315  (10)
0

By definition, for all values of T, and T the function f;,
equation (10), is different from zero.

Substitution of (10) in (9), and using the Poisson equation
(7), results in

T,

P 0.286 1
(&) - (1)
T, \po (To T, 1)

223.15

So the lifting condensation level (cloud bottom) pressure p
and temperature T, are given by

1
— ——— 12
Ds TO_T;+13'5 Po ( )
223.15
1
T =T, (13)

()
223.15
It should be noted that the choice of the exponent in (4) is
responsible for the simple form of (12) and (13).

Ascent of the air parcel above the level (T, p,) results in the
condensation of the water vapor to liquid water. The released
latent Heat or condensation will warm the air parcel. Conse-
quently, further rising will not be heat adiabatic. It is assumed
that the latent heat released does not cross the boundaries of
the ascending air mass and that the heat content of the pre-
cipitating condensed material is small compared to the heat
content of the air mass, so that it does not have to be con-
sidered when calculating temperature changes.

Under the above assumptions the characteristic equivalent
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potential temperature 6, of the pseudo-adiabat followed is
[Wallace and Hobbs, 1977]

8e=0'exp|:

where L(T) is the latent heat of condensation, which depends
weakly on the temperature. Eagleson [1970] suggests a linear
function for L(T) of the type

L(T)=A — B-(T —273.19) (15)
where 4 =25 x 10% (J kg™!) and B =238 x 10® (J kg~!
oK— l)‘

Expressing 6 in terms of p and T using (7), and substituting
in (14), leads to the following description of the variation of T
and p along a constant 8, pseudo-adiabatic rising

6.~ T (P_> exp {L(T) ~wy(T, p)}
p ¢, T

L(T) w{(T, ps)] 14

c, T,

4

(16)

In the above equation, 6, is known (by (14)), and the two
remaining unknowns are p and T.

Given a terminal pressure level p,, it is then possible to
obtain the corresponding temperature T, using (16). Fur-
. thermore, the final saturation mixing ratio w7, p,) can be
computed by an equation of the type in (6). The difference

Aw = Wo — WS(T;, pt) (17)

is the mass of liquid water resulting from the condensation
during the pseudo-adiabatic ascent of a unit mass of dry air.
Since the specific humidity g, is related to the mixing ratio w
by w = g, [ Eagleson, 1970], it follows that Aw is also approxi-
mately equal to the mass of liquid water resulting from the
ascent of a unit mass of moist air which appears in (2).

Due to the nonlinearity in (16) with respect to the temper-
ature T, Aw cannot be found explicitly. Rather, it must be
obtained using numerical iterative methods of root determi-
nation (e.g., the Newton-Raphson method). The necessary de-
rivatives and starting value are given in Georgakakos and Bras
[1982b].

In summary the condensed water input can be expressed as

I=f(u, a)) (18)
where u is the vector of input variables
u” = [TypoT;] (19)
and a, is a parameter vector
a,” = [pv] (20)

with the symbol T, when used as a superscript, defining the
transpose of a vector or matrix quantity.

An important conclusion is that the input rate I is not (in
general) a linear function of the water vapor mass content of
the inflowing (in the storm) air.

Discussion of Assumptions in the Unit Area Column
Condensation Equation

Due to the large spatial extent and time duration of the
storms of significance to hydrologic basins (areas of 1000
km?), very few (mostly radar-based) observations of the
characteristics of the storm dynamics are available (e.g., dis-
cussions in Rogers [1979]; Fletcher [1962]). For the past
years, observations of the storm dynamics have been almost
exclusively in small-scale convective storms. The discussion of
the model assumptions based on these observations is justified
by evidence of the existence of convection regions within
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large-scale stratiform cloud development [Hobbs and Houze,
1976; Fujiwara, 1976; Rogers, 1979].

Observations of the liquid water content of convective
clouds by aircraft, summarized by Byers [1965], showed that
it is significantly less in most cases than the value realized by
pseudo-adiabatic parcel ascent. The ratio of observed to theo-
retical water content ranged from 0.1 for observations on
West Indian hurricanes to 0.4 for observations on trade-wind

.cumulus in the Caribbean, decreasing with height in the cloud.

This was explained by the supposition that dry environmental
air mixes into the cloud, thus reducing its water content. The
extent to which entrainment is important to the types of storm
systems of interest in this work cannot be determined on the
basis of existing observations. Nevertheless, it can be stated
that, if entrainment is important, the model will tend to over
estimate the precipitation rate.

Direct deposition from the vapor phase to the solid phase is
not taken into account during condensation, therefore, the
latent heat of sublimation is not used in Equations (14), (15),
and (16). Observations of large numbers of supercooled liquid
water droplets at —15°C or colder [Rogers, 1979] render this
assumption reasonable. Nevertheless, even for very low tem-
peratures, the latent heats of condensation and sublimation
differ by less than 10% [Byers, 1965]. :

In using adiabatic transitions it is implicitly assumed that
the air below the cloud base is well mixed. That is, the temper-
ature lapse rate is the dry adiabatic and the cloud base is at
the lifting condensation level [Rogers, 1979]. Coulman and
Warner’s [1976] aircraft observations in convective clouds in-
dicate that this assumption is reasonable.

Condensation of the water vapor at saturation conditions,
not allowing supersaturation, is supported by (1) the presence
of hygroscopic nuclei in the atmosphere in vast quantities and
sizes and (2) the long time intervals of interest in this work (of
the order of a few hours).

The errors due to considering the dry air and the water
vapor in moist air as ideal gases are rather small. Dufour and
Defay [1963] prove that in humid air at pressures less than
1000 [mbar] the error for the dry air is less than 0.1% and the
error for the water vapor is less than 1%.

Equation (2) utilizes vertically averaged values of p,, and v.
Given the uncertainty associated with estimates of v in the
unit area column, the increased complexity introduced by in-
tegrating over vertically varying updraft velocities and air
densities was not considered necessary.

OuTtPUT Mass RATE THROUGH CrLoup Top O,

The output mass rate per unit area due to the action of the
updraft velocity v, at the top of the cloud, on the smallest
water particles with sizes in the interval (D, D + dD), is

0(D)-dD == - p,,- D(vy — v(D))n(D)- dD

: @1

with n(D) the size distribution at the cloud top, and v(D) the
terminal velocity of the hydrometeors of diameter D.

The above has to be integrated for the diameter interval (0,
D), where D’ is the diameter such that vy > v(D). To perform
the necessary integral, the nature of D’, which depends on the
form of the v(D), must be defined. Furthermore, the distri-
bution of particle size n(D) at the top of the cloud is required.

Particle Size Distribution n(D)

Hydrometeors, or cloud particles, grow in a cloud by a
process of condensation and mostly by coalescence, a process
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induced by the collision of moving particles [ Eagleson, 1970].
The distribution of hydrometeor sizes resulting from the
growth mechanisms is fairly undefined. Nevertheless, it can be
inferred [Mason, 1971; Pruppacher and Klett, 1978] that the
distribution n(D) representing the number of particles of diam-
eter within the interval (D, D + dD) per unit volume of air is
such that n(D) increases steeply for D to reach a maximum,
and then it decreases with a very mild slope for D.

Several forms for n(D) satisfying the above characteristics
have been suggested [Mason, 1971; Pruppacher and Klett,
1978], but they are all tainted by the difficulties of measuring
hydrometeor size in the field. Errors are induced because of (1)
inability to measure particles smaller than a given size, (2)
inability to measure simultaneously at different locations, and
(3) troubles with instrument calibration-and reliability under
freezing conditions.

Many investigators have then suggested the use of a simple
exponential form for the hydrometeor size distribution at a
given elevation.

The form (see Figure 4)

n(D)y = Nye™P 22)

has been used by Marshall and Palmer [1948], Gunn and Mar-
* shall [1958], Dingle and Hardy [1962], Ohtake [1965], Ge-
orgakakos and Bras [1982b] among others. The parameter c in
(22) is the inverse mean diameter size at a given level.

The possible objection to (22) is that it implies hydro-
meteors at diameters approaching zero. The attractive alter-
native would be to use a distribution starting at zero and
peaking somewhere in the small diameter region. Nevertheless,
given the acknowledged uncertainties of measuring the
number of small hydrometeors, (22) is adequate. In fact the
small diameter region plays a small role in the microscopic
meteorological and hydrological behavior. For example, the
water equivalent mass due to hydrometeors of diameter in the
interval (D, D + dD) at a given level (per unit volume) is

X(D)

= pn(D) g D? (23)

The corresponding rate of mass precipitation out of the
cloud would be
T
P(D) = p,,n(D) 3 D*w(D) —v) 24
where p,, is liquid water density, v(D) is the terminal velocity
of a hydrometeor of diameter D, and v is updraft velocity.
Assuming (see next section) that

v(Dy=a-D

where o is a coefficient, and normalizing (22) by N, and (23)
and (24) by np,,No/6c® and ﬂprOO(/6C respectively, results
in the curves shown in Figure 4.

The normalized size distribution, liquid moisture content,
and precipitation rate are given as functions of the nondimen-
sional hydrometeor size measure cD. The obvious result is
that most of the moisture and precipitation is due to diam-
eters well above the mean 1/c. The peak liquid water equiva-
lent occurs at D = 3/c and the maximum water equivalent
mass precipitation at 4/c. Only 1.9% of the total liquid water
equivalent mass is contributed by hydrometeors less than 1/c
in size. The equivalent figure for the precipitated mass rate is
0.37%.

The mean diameter of the hydrometers should be larger
near cloud bottom and smaller at the top. This is a reflection
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Fig. 4. Normalized number concentration n,, water mass content
X,, and precipitation rate P, due to hydrometeors of diameter in the
range (D, D + dD) vs. the normalized diameter cD.

of the expected nuclei size distribution and the coalescence
mechanism. This distribution is very hard to establish because
of the sampling difficulties. A reasonable assumption suggests
a simple linear distribution of the value of ¢ with height Z,

d(Zy=c +

(Cu - Cl) (25)

z.
where ¢; and ¢, are lower and upper values of ¢, Z, is the
thickness of the cloud column, and Z is height within the
cloud measured from cloud bottom.

The mean hydrometeor diameter at a level Z implied by

(25)is
1
. zZ 1 L, E 1
Zc DI Zc D_u
where D, = 1/c; and D, = 1/c,.
and (26) are shown in Figure 5.

The mass of liquid water equivalent in storage, X, in the
column is given by

Zi—Zy 1
X = f - np, N,y
o 6

D(Z) = (26)

The profiles implied by (25)

. {J DmaxD3 . @~ Dleit @/Zo)eu=en] dD} -dz 27
Dmin
where Z,, Z, are the heights of the top and the bottom of the
unit area column cloud, and D,;,, D,,,, are the minimum and
maximum diameters in the cloud.
For D,,;,, D, taken as 0 and oo, respectively, (27) gives

et (23 ()
Cy Cy cu Cu
Denoting by y the ratio of the average diameter at cloud base
to the average diameter at cloud top, or equivalently,

(28)

w=vea  y=x1 (29)
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Fig. 5. (a) Height variation of the inverse layer-average diameter c: ¢, at cloud top and ¢, at cloud bottom. (b) Height
variation of the layer-average diameter D: D, at cloud top and D, at cloud bottom.

results in

1 {1/1 1 1
X =npNoZ. 5=~ +5+5 30
Pwito c4{3(v e v3>} o
with ¢, replaced by c¢ for notational convenience. For a uni-
form c distribution with height, the result is

1
X = nprOZc a4
4

(31
The effect of a linear variation of ¢ with height is the introduc-
tion of the factor J given by

sl 11
C3\y R

Equation (30) relates the microphysical cloud structure as
represented by the parameters Ny, ¢, and y to the mac-
rophysical state of the system, the mass X of liquid water
equivalent in the unit area column.

From (30), N, can be expressed in terms of ¢ as

(32)

4

c
No = X 33
=7 (33)
with corresponding size distribution
c* b
D)= — ¢ 34
D)= ———e (34)

The particle size distribution appearing in (21) is that at the
top of the cloud,

C4

P20

n(D) = exp (—¢,D)X (35)

Terminal Velocity of Hydrometeors v(D)

Determining the motion of a particle during free fall in the
atmosphere are the gravitational force corrected for buoyancy
and the drag force. Due to difficulties in the solution of the
Navier-Stokes equations for Reynolds number greater than 1,
approximate numerical solutions and field or laboratory ob-

servations have been used to determine the terminal velocity
of an isolated cloud particle as a function of its size and shape.

Beard [1976] compiled observations of the free fall of liquid
water drops of a wide range of diameters (from 1 p to 7 mm)
and presented expressions for the terminal velocity v, as a
function of the diameter D, the particle density p,, and the
temperature and pressure, T and p, of the ambient air. Based
on Beard’s expressions, the terminal velocity of liquid water
drops was calculated for a variety of conditions and diameters.
For illustration purposes the results for T = 273.15°K,
p = 800 mbar (curve 1) and T =293.15°K, p = 1013 mbar
(curve 2) are shown in Figure 6. Intermediate conditions lie
between the two curves in such 4 way that v, decreases as the
pressure and temperature increase. This variation of T, p is
representative of the conditions expected in the subcloud layer
where the precipitation rate is sought. A simple linear ap-
proximation to the function v/(D) is fitted to the results of
Beard. It is shown by the dashed line in Figure 6 (curve 3).
The fitted curve represents v, reasonably well for diameters in
the range of 1-2 mm, which is the size of most raindrops. It
underestimates v, for diameters in the range of 0.2-1 mm
(maximum error less than 20%), and it overestimates v, for
diameters greater than 2 mm. The approximation takes the
form

v(D)=oa-D (36)

with a = 3500 (s~ 1).

Contrary to liquid precipitation drops, solid precipitation
particles of the same mass display a wide variety of terminal
velocities. For the most part this is due to their highly irregu-
lar shape. Spherical ice particles of densities 100900 kg m 3
and highly irregular aggregates of dendritic crystals can be
found in precipitation. The interested reader is referred to
Magono and Lee [1966] for a classification of the snow crys-
tals and to Hobbs et al. [1974] for a discussion of the depen-
dence of shape and size spectra on the conditions prevailing in
the place of formation.

Locatelli and Hobbs [1974] fitted observations of terminal
velocity and mass of precipitating solid particles on the Cas-
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cade Mountains of Washington state with simple power laws.
The scatter of the data is considerable, and no trend was
obvious for many classes of shapes.

Figure 6 depicts the regression relationships given in Lo-
catelli and Hobbs [1974] for “lump graupel” (curve 5), “hexag-
onal graupel” (curve 7), and aggregates of dendritic crystals
(curve 8). Curves 4 and 6 are Beard’s [1976] results for solid
spheres of densities 500 and 100 (kg m~3), respectively. The
results of Locatelli and Hobbs [1974] shown are those for
which the regression correlation coeflicient was higher than
0.69. The dashed line (curve 9) was “fitted” to all curves corre-
sponding to solid precipitation particles.

The dashed line is a reasonable approximation to con-
ditions found in (1) dendritic aggregates for D in the range 0.5
to 1.5 mm, (2) “graupel” particles for D in the range 1.5 to 2.5
mm, and (3) ice spheres of densities 100-500 kg m~3 for D
greater than 2.5 mm. For D smaller than 0.5 mm the dashed
curve approximates the low-density ice spheres, curve 6, It is
expected that the approximation is better than suggested in
Figure 6, since the curves of Locatelli and Hobbs [1974] corre-
spond to low air density conditions (observations took place
at altitudes 750 and 1500 m above sea level). Thus they tend
to overestimate the terminal velocities of the snow crystals at
lower altitudes. '

The dashed line for solid precipitation is of the type in (36)
with o = 1500 s~*. The terminal velocity of snow particles
appears to be about one third that of the liquid water drops
with equal mass.

Due to insufficient data in the literature, the velocity of
isolated particles is assumed equal to the velocity of a system
of particles. Experiments documented in Sulakvelidze [1969]
show, however, an increase of fall velocity for a system of

V1 (M/SEC)

10 | 1 | I P11l l | | ! | 1
0% s5x107% 1073 5x1073
D(M)

Fig. 6. Observed and fitted terminal velocity as a function of hy-
drometeor diameter: (curve 1) raindrops, T = 273.15°K, p = 800
mbar—Beard [1976]; (curve 2) raindrops, T = 293.15°K, p = 1013
mbar—Beard [1976]; (curve 3) raindrops, fitted—equation (36);
(curve 4) ice sphere, p = 500 kg/m?3, T = 273.15°K, p = 1013 mbar—
Beard [1976]; (curve 5) lump graupel—Locatelli and Hobbs [1974];
(curve 6) ice sphere, p = 100 kg/m?>, T = 273.15°K, p = 1013 mbar—
Beard [1976]; (curve 7) hexagonal graupel—Locatelli and Hobbs
[1974]; (curve 8) aggregates of dendritic crystals—Locatelli and
Hobbs [1974]; (curve 9) snow, fitted—equation (36).

particles of common dimension as compared to an isolated
particle of the same dimension. The increase depends on the
distance of the particles expressed in number of diameters, the
Reynolds number, and the total number of particles. For
Reynolds number of order 10™%, for particle center distances
of the order of 15 diameters, the increase is about 25%. As the
distance between the particle centers increases, the difference
in velocity between the system of particles and a single particle
drops rapidly to zero (its value for a distance greater than 30
to 35 diameters). Using the single isolated particle velocity,
therefore, would tend to underestimate the precipitation rate,
especially during high-intensity periods.

Determination of the type of precipitation (rain/snow) is
based on the surface temperature T, such that snow occurs
when T is less than 274.50°K [Eagleson, 1970].

Summary of Output Mass Rate Through Cloud Top

Having defined the terminal velocity and the particle distri-
bution, it is now possible to integrate the expression for the
output mass rate through cloud top, equation (21). The inte-
gration is from zero (the smallest particle size) to D' = vy /.
Particles of size greater than D’ will counteract the cloud top
updraft velocity v, therefore,

D
0, = f % puNoD(v; — aD)e™"P dD 37)
0 .
where
D=2
o
cu = 'Y ' cl
4
C
No= X
° np,Z.0

Output Mass RaTe THROUGH CLoup Bottom, O,
The output mass rate through cloud bottom is derived simi-

larly to O,,

)
0, = f g pNoD¥ D — vy)e P dD (38)
where N, and D’ are similarly defined. The only difference is
the use of the ¢, value, the inverse of the mean particle diam-
eter at the cloud bottom. The integration is up to oo, since in
principle the particle size distribution admits infinite diam-
eters. In reality a maximum diameter exists. Nevertheless, the
exponential decay of the distribution makes the effect of very
large particles negligible on the value of 0,.

SURFACE PRECIPITATION MAsS RATE P

Due to evaporation in the subcloud layer, the precipitation
rate at ground level is generally only a portion of O,. Denote
P the mass precipitation rate of liquid water equivalent per
unit area at ground level. It is given as

+ o0 T
P = f 3 pwD*L(D)v{(D) — vg)n(D) dD (39)
D,
where the limit D, is now defined as
s
D, =max <D, ~ (40)

D, is a critical minimum diameter such that particles of
diameter less than D, will completely evaporate in the sub-
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Fig. 7. Integral F as a function of the water equivalent diameter

D: (curve 1) T, = 273.15°K, p, = 1013 mbar, p, = 1000 kg/m?; (curve
2) T, = 293.15°K, p, = 1013 mbar, p, = 1000 kg/m3; (curve 3) T, =
273.15°K, p, = 800 mbar, p, = 1000 kg/m3; (curve 4) T, = 273.15°K,
po = 1013 mbar, p, = 100 kg/m>.

cloud layer before reaching the ground; C(D) is a function that
reduces particle mass. The rate of reduction is a function of
the particle diameter. The following subsection defines D, and

{D).

Evaporation of Precipitating Hydrometeors

Hydrometeors exiting through the cloud base will suffer
evaporation throughout their trip to ground level. Evapora-
tion is driven by the difference between the vapor pressure at
the particle surface and that in the ambient air. At the particle
surface the vapor pressure can be assumed saturated at the
wet bulb temperature T,,. In the ambient air the vapor pres-
sure would be equivalent to that at saturation at the dew-
point temperature T,. Since it is expected that T,, > T, then

e(T,) > e(T))

and the vapor pressure gradient is favorable to evaporation.

This evaporation is enhanced by the ventilation effect on the
particle moving relative to the surrounding air.

According to Byers [1965], a motionless droplet with sur-
face temperature T, loses mass at the following rate:

dD 4D* <5@ B es(Tw))

D—= (41)
dt R T, T,

where D is the droplet diameter, ¢ is time, p, is the droplet

density, R, is the gas constant for water vapor (461 J kg™!

°K 1), and D* is the diffusivity of water vapor in air.
Pruppacher and Klett [1978] give the diffusivity as

pr =211 x 105 ) (2
T* Po

where D* is in m? s~! when T* and p* take values of
273.15°K and 101,325 kg m~' s~2 (1013.25 mbar), respec-

(42)
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tively. Equation (42) is valid for ambient air temperatures T,
between 233.15°K (—40°C) and 313.15°K (40°C).

To account for a hydrometeor moving at terminal velocity
v{D), a ventilation effect factor is introduced in (41):

D dD _ 4D*f/D) <es(’1}) B es(Tw)>

4
Pr 4 R, T, T, “3)

w

Based on experiments, Beard and Pruppacher [1971] suggest
the following form for the ventilation factor acting on falling
spherical meteors:

1+ 0.108 N_2*Re N, '*Re"* < 1.4
D)= 113 ,1/2 13R,1/2 (@4)
0.78 + 0.308 N '*Re N 3Re'? > 14
where the Reynold’s number Re is defined as
D
Re = 204D (45)
u
and
u
N, =—— 46
= (46)

In the above equations, p, is the air density at temperature
T, and pressure p, (kg m~3), and g is the air dynamic viscosity
(kg m~! s~ ') at temperature T;,. The dynamic viscosjty can be

. obtained by [Rogers, 1979]

p=172 107 =2 ) (L)
' T, + 120)\273

where the ambient temperature Ty is in degrees Kelvin.
For negligible updraft in the subcloud layer the rate change
of the hydrometeor position is given by the terminal velocity:

47)

— = —u(D)

dt “8)

Using the above in (43) yields an expression in terms of
elevation and diameter which in turn can be integrated be-
tween a final diameter D at elevation 0 and an initial diam-
eter Dy, at the cloud base elevation Z,:

? DyD) j 4p* (e (T) e (7:,))
——=dD = : = =214z 49
£ Tl N N @
Figure 7 shows a plot of the integral
D py(D)
F(D) = ~— .dD (50
pp 0 fv(D) )

which appears on the left side of (49). The range of temper-
atures and pressures cover typical expected values. Notice that
curve 4 with 100 kg m~3 corresponds to snow (low-density
hydrometeors). Clearly, a cubic approximation to (50) is very
reasonable,

F(D)=C, + C,D? (51)
which on substitution in (49) results in
20 4D* (e(T,) e(T)
C 3D = —_— == -="1)4dz 2
(Do ) J;) R, ( T, Ty d (52)

Georgakakos and Bras [1982b] further approximate (52) by
assuming that 7T,, and T, as well as pressure conditions, do
not change over the elevation to cloud base Z, Under the
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isothermal and isobaric conditions, (52) becomes

1 4D* (e(T,) Ty

3 3 __ 7 (fIsvw s Z

D, D, C. R, < T, T > b (53)
Notice that (53) can be expressed as

D,\? .

(D_o) ={D) (54
with
D.\? '

D)y=1- <D_o> (5%

where D, is a critical diameter such that particles smaller than
D, completely evaporate on their way to the ground. The
critical diameter is

[ (e elm), 1
A o

If it is assumed that during a storm T, = T, (53) simplifies
further,

4D*e(Ty) 1/3
D,=|D,)  ——————(1- 57
s ,: 0 C,R.T, ( nNZ, (57)
where r is the fractional relative humidity
_eT)
e(To)

Figure 8 shows the numerical integration of (49) [Pruppa-
cher and Klett, 1978] when Dy, = 1.2 mm and the relative
humidity takes values of 0.6 and 0.8. Elevation zero is taken at
cloud base. Given is the travel distance of the hydrometeor.
Figure 9 shows similar numerical results [Beard and Pruppa-
cher, 1971]. This time the initial diameter is required to end
with a 0.2-mm final diameter after a 2000-m fall. The zero
level is the ground. Also shown in the figure are the approxi-
mations resulting from (57). Figure 9 corresponds to liquid
droplets and implies a C; value of 7 x 10° kg m~2 s~ !, which
was determined from the fitting of (57) to the results of Figure
8.

The value of C, obviously depends on the nature of the
hydrometeor. Figure 7 showed the different behavior of snow
and liquid precipitation particles. Georgakakos and Bras
[1982b] argued that, if C, in (51) is small, then

Rain: F(D) N Rain: C,
Snow: F(D) ~ Snow: C 1

O [MM]
08 09 10 L 12
0 T T T
-Zb[M]
-500 |-
-1000 (—
r=0.6
-1500
r=08
-2000

Fig. 8. Numerical integration results in Pruppacher and Klett
[1978] used to determine the constant C, in (57): T, = 278.15°K and
Po = 800 mbar.

(M)
02 03 04 05 06 O7
2000 | AL i
/
zy[m] / /
1500 |- ! 0
Ssr=095 /)
7
1000 - // ,j
'y 4
/) // r=0.80
2
500 |-
0

Fig. 9. Initial diameter at cloud base D, as a function of Z, for
different values of . Solid lines are for numerical integration results in
Beard and Pruppacher [1971]. Dashed lines correspond to (57) with
D, = 0.2 mm, T, = 273.15°K, and p, = 765 mbar.

From Figure 7 the above ratio is around 5, which implies an
approximate C; value for snow of 1.4 x 10° kg m™3 s7*,
Figure 10 gives the critical diameter D, required for nonzero
precipitation as a function of cloud base elevation, relative
humidity, and rainfall or snow. The figure results from (56)
with T,, & T, and the values of C, previously discussed.
Equations (55) and (56) define the factors {(D) and D, that
appear in the precipitation rate and equations (39) and (40).

SUMMARY OF MODEL EQUATIONS

Define the dimensionless numbers N,, Ny, and v, as

N, =2 (58)
o .
Np = cD, (59)
1
v, = 4o - ‘ (60)

The number N, is indicative of the updraft strength at the
cloud base, since it is the ratio of the diameter (vg/x) of the
particles that possess terminal velocity equal to v, to the
average diameter (1/c) of the cloud particles. As N, increases,
the updraft strength increases.

The number N, is a measure of the relative strength of the
diffusion process (equation (56)) in the subcloud layer. Diffu-
sion losses increase with increasing N,

The velocity v, corresponds to particles of diameter (4/c),
which are the ones that contribute the maximum rate to the
total precipitation rate (Figure 4).

Integrating (37), (38), and (39), using the nondimensional
numbers just defined, yields

N,2> N,
X 474 T
0y =<1, - (61)
OGN | ON)
14+-— (N
X 1 * ( )+ 4 T s N,
%z F M
(62)
2 N 3
X (1—4><1+N,, >+ 3
~ oz, P e (©3)
<
Np=N,
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Fig. 10. Initial diameter D, at cloud base, of the largest com-
pletely evaporating hydrometeor in a subcloud layer of depth Z, as a
function of Z, for different values of the relative humidity r. For
raindrops: T, = 293.15°K, p, = 1013 mbar. For snow particles: To =
273.15°K, p, = 1013 mbar, p, = 100 kg/m*.

142N +N”2+N"3 Np®
X 47" 4 24 24
Pzt = (64)
Nu = ND

Denote by Oy the reference mass rate per unit area defined by

OR = g Up (65)

<

Then one can define the reduction factors m,, m,, and m, as
the ratios of the rates O, O,, and P to the reference rate Og.

Figure 11 shows plots of m,, m,, m, as functions of N,, Np,
and y. Curve 1 represents m, as a function of N,. Curves 1, 2, 3
represent m, as a function of N, for N equal to 0, 2, and 4,
respectively. The reduction factor m, is represented in curves 4
and 5 for y equal to 1 and 2, respectively. Based on Figure 11
it can be concluded that

(1) losses through the cloud top (i.e., O, rate) become signifi-
cant for N, > 3 if y is equal to 1 or 2 (The larger the 7, the
smaller m, becomes.);

(2) for low N, numbers (N, < 1) the precipitation rate that
reaches the ground is practically equal to the output rate O,
through the cloud base (curves 1 and 2);

(3) as N, decreases, the precipitation rate P increases, reach-
ing a maximum as N, tends to O (no updraft at the cloud
base); and

(4) for instances of insignificant diffusion losses and for
small N, numbers (N, < 0.5), the precipitation rate P is given
by

X
=5z.™

P (66)

Notice that (61) through (64) are linear functions of the state
X. The precipitation model equations can then be expressed
as

dX
A = f(u, a;) — h(u, ap)X (67)

P = ®(u, ag)X (68)

where X is the state, the liquid water content in the cloud; P is
precipitation at ground surface; f(u, a;) moisture input; h(u,
a,) and ®(u, a,) are nonlinear functions clearly defined from
(61)(64). The functions appearing in (67) and (68) are nonlin-
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ear in the input vector u (equation (19)), and in the parameter
vectors a; and a,. Vector a; was defined in (20), and vector a,
is defined as .

a," = [p, v, ] (69)

Functions h(-) and ®(‘) depend on p, through the ap-
pearance in (61)(64) of Z. = Z, — Z,. Assuming hydrostatic
pressure in the atmosphere, pressure and elevation are related
through the hypsometric equation [Wallace and Hobbs,

1977]:
2R (@> (70)

where T is the average temperature in the layer of height Z; R
is the dry air gas constant; g is gravitational acceleration, and
Do is the pressure at the bottom of the layer.

Precipitation as given by (68) is a mass rate per unit area. In
order to convert to a depth rate per unit area it is necessary to
divide by the density of water.

The linear formulation of (67) and (68) facilitates the use of
modern estimation theory concepts in predicting rainfall. As-
suming additive- errors in the dynamics of moisture in the
cloud as well as in the measurement of precipitation, (67) and
(68) become

éﬁ = f(u, a;, t) — h(u, ay, )X + T(OW ()

i (71)

72)

where W(t) is white noise of known variance parameter Q(t)
and V(¢) is a white-noise sequence of variance R(t). The errors
are not cross correlated. The dependence on time has been
explicitly shown for the sake of clarity. Equations (71) and (72)
exactly fit the format necessary for Kalman filter analysis
{continuous dynamics-discrete observations). The unfamiliar
reader is referred to one of the many references for details
[Gelb, 1974; Schweppe, 1973; Georgakakos and Bras, 1982b;
Chiu, 1978]. The advantage is that the Kalman filter allows
the joint processing of the two available information sources:
(1) the physically based model dynamics and (2) the observa-
tions of precipitation (equation (72)). Since both sources are in
error, they are combined according to their reliability to

P = ®(u, ay, )X + V(1)

0.5
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Fig. 11. Reduction factors m,, m, and m, as functions of the
number N,. N, and y are parameters of the plots. Curve 1 is for m,
Curves 1, 2, and 3 are for m, and for Nj, equal to 0, 2, and 4,
respectively. Curves 4 and 5 are for m, and for y equal to 1 and 2,
respectively.
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update the model state X(r) every time an observation of P(t)
is available. Forecasting can then be made from updated,
better initial conditions.

Given the Kalman filter formulation, the station precipi-
tation model can be used as a stand-alone, real-time rainfall
predictor or can be combined with a Kalman filter formu-
lation of a streamflow predicting model [Kitanidis and Bras,
1980a, b; Georgakakos and Bras, 1982a]. The details of both
Kalman filter formulations are given in Georgakakos and Bras
[19825].

CONCLUSIONS

The rainfall model presented here attempts to cover the
important elements of cloud physics that lead to precipitation.
The model has several advantages:

1. It results in linear equations of the state, here defined as
the cloud moisture content.

2. The inputs to the model are measured at ground level,
they are temperature T, dew-point temperature T, and pres-
sure pg.

3. Although the model is based on a unit area column
developed for point precipitation, it is reasonable for scales
comparable to the size and time response of river basins. The
spatial and time scales will be fixed by the rate of variation in
space and time of the inputs Ty, T}, and p,,. As it will be seen in
an accompanying paper [Georgakakos and Bras, 1984], these
variables exhibit very high correlation in time and space.

As it stands, the model parameters are p,, v, and c. These
parameters are not necessarily easy to obtain. In concept, p, is
available from remote sensing or radiosonde information. It is
also possible to obtain the updraft velocity from similar
sources [Ingraham and Russel, 1981]. The particle size distri-
bution parameter ¢ is location dependent and would have to
be fixed from literature or calibrated.

The above parameter sources are not convenient and are
unavailable in many locations. Furthermore, they will vary
from storm to storm and within a storm, making real time
monitoring absolutely necessary. An alternative is to parame-
terize p,, v, and ¢ in terms of other more accessible meteoro-
logical variables. In an accompanying paper [Georgakakos
and Bras, 1984] the authors do just that. Model behavior is
tested there with real storms in different locations and cli-
mates. The model is also compared to simpler statistical ap-
proaches. The results are quite satisfactory.
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