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ABSTRACT 2. MODEL FORMULATION

Parameter estimation of a stochastic The scalar model equations are:
precipitation model is based on the study of
contour maps of various performance indices in dx(t) = ft(E) + At(ﬂ) X(t) + W(t) (1)
the parameter space. For each parameter set, a dt
stochastic approximation algorithm is used to
determine the best model-error spectral z(tk) = Hk(ﬂ) x(tk) + V(tk); k=1,2,... (2)
density. Results show the robustness of the
parameterization to changes in storm type, where,

topographic regime and performance criteria.
X(t): Mass of the condensed liquid water

1. INTRODUCTION equivalent in the area character-
ized by the temperature and pres-
A one-dimensional stochastic rainfall sure input u at time t (model
prediction model is analyzed in the following. state).

The state—space form of the model equations were T

developed” based on atmospheric thermodynamics u: Model input vector such that us o=
and cloud microphysics principles. Using surface [To, Pos Td}, with To» Pos Tqs the
pressure, temperature and dew-point temperature, current surface temperature, pres-—
the model gives as an output the average precipi- sure and dew-point temperature, and
tation rate in the area characterized by the upperscript T denoting transpose of
temperature and pressure input. The model formu- a vector or matrix quantity.

lation is based on pseudo-adiabatic ascent of the

air-masses and on simplified cloud microphysi¢s ft(ﬂ): Rate of moisture input to the

with exponential particle-size distribution and clouds computed from the pseudo-
linear dependence of the particle terminal fall- adiabatic ascent of surface air
velocity on the particle diameter. Evaporation characterized by Tos Po» and Tgqe

of the falling particles, for unsaturated sub-

cloud layer is explicitly taken into account by At(g) X(t): Input dependent cloud-moisture

the model. depletion rate.

This work presents a procedure for the Z(tk): Observations of the spatially
identification of the two free model parameters. averaged precipitation rate in the
Contours of various performance indices are area characterized by u. The
examined in the parameter space. A stochastic observations take place at regular
approximation of the appropriate model-error intervals At=tk+1 - tk.
spectral density Q is computed for each parameter
set in the parameter space examined. TIn this Hk(g) X(tk): Model-predicted average
way, adjustment of the model error statistics 1is precipitation rate in the area
done automatically for different parameter sets characterized by u at time ty.
so that, for every parameter set, the Q-optimized
value of each performance index is computed. W(t): White-noise error input with zero

mean and spectral density Q.

Following the presentation of the model
equations in the next section, section 3 presents V(ty): White-noise error sequence with
the parameter identification strategy and cali- zero mean and variance R.
bration data. 1In section 4 the results of
parameter estimation are discussed. Verification Expressions. for ft(E), At(B) and Hk(g)
is offered in section 5 where the calibrated have been derived.
model is used in real time to predict hourly
precipitation rates. Section 6 presents The two free model parameters are:

conclusions drawn from this study.
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1) The ratio EPS1 of the updraft velocity
to the square root of the potential
thermal energy per unit mass of the
ascending air at the height of average
updraft veloeity, and

2) The time- and storm—constant cloud-
particle average diameter denoted by
EPS4.

The function f,.(u) depends on EPS1, while
At(g) and Hk(g) depend both on EPS1 and EPS4,

As EPS1 increases, the updraft velocity
increases giving a higher moisture input rate

fc@i)‘

The primary mechanism that determines
A (w) and the Hy(u) is the fall of the cloud
particles in the updraft field. Therefore, the
larger the particles (consequently heavier) the
higher the precipitation rate is. On the other
hand, the greater the updraft, the lower the
precipitation rate becomes. As a consequence,
when EPS1 increases, At(u) and Hk(u) tend to
decrease, while, when EPS4 increases, A (u) and
Hk(u) tend to increase.

Note that the behavior of Hy(u) when EPS!
and EPS4 are varying may lead to non-observability
conditions for the precipitation model. For high
EPS1 and low EPS4, Hy(u) tends to zero exponen-
tially, making the model state unobservable from
observations of the precipitation rate.

The model error noise W(t) inm Eq. (1)
represents 1) random errors in the model
structure due to simplification of the physical
mechanisms, 2) random errors due to inaccurate
specification of the model parameters and
3) random errors in the input variables.

The observation noise V(tk) in Eq. (2)
represents: 1) random errors in the input
variables, and 2) random errors in the
observations of the precipitation rate.

The continuous dynamics-discrete observa-
tions Extepded Kalman filter is used as the state
estimator. Important for the present study is
the fact that the filter parameters Q and R need
to be determined together with the optimal set of
parameters EPS1 and EPS4.

Once EPS1, EPS4, Q and R have been deter-—
mined, the prediction step of the Extended Kalman
filter can be used to yield a forecast of the
model state and of the precipitation rate in real
time.

3. PARAMETER IDENTIFICATION STRATEGY

The calibration data consists of storm
data from the meteorological station at Logan
Airport, Boston, Mass. Hourly values of T,, p,,
and T4 together wigh hourly, average precipi-
tation rate for several storms are used. The
storms were divided into two groups:

—-- A Convective Group (CG) consisting of a
line-storm and a tropical storm with a total of
110 wet-hours.

-- A Stratiform Group (SG) consisting of
low-pressure frontal storms with a total of
125 wet-hours.

The CG group had a time—average of
2.4 mm/hour and a time-standard deviation of
2.7 mm/hour. The SG had a time-average of
1.8 mm/hour with a time-standard deviation of
2.5 mm/hour.

Given that the observation errors
associated with To’ Pys and Td were rather small
with respect to other errors modeled by W(t) and
V(tk), the input was assumed error free. A time-
constant standard error of 1 mm/hour was used for
the precipitation rate observation (R = 1 mm/hour).

Since a large part of the noise level in Q
is due to the errors from inaccurate parameter
specification, an adaptive scheme was used to
obtain a reasonable Q-value for a certain
parameter set (EPS1, EPS4).

The stochastic approximation iterationz is
given next (k = 0,1,2,...):
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A (w = A, @ (8)

P(tk+1[tk) is the predicted state variance at
time trs+1 8lven information up to and including
time t,, and r(tk+1) is fhe l-step predicted
residual at time SR Q(tk) represents the
current, at time t;, estimate of Q.

The stochastic approximation algorithm
presented forces compatibility between the

filter-predicted variance of the innovations and
the actual residuals variance.

Initial conditions used for the initiation
of iterations were:

- 1 2 2 (9)
Q = £2(u) | AY (W)

o At [ t = t -J t =t

[e]

S = (0.9 x Q) (10)
o 0.9 x Q0
8?0 ) exp{ZAo (u) At} -1 (an
3Q 24 (u)

The choice of Qo presented scales the initial
estimate of Q0 according to the particular ft(E)
and At(g) functions for each choice of EPSI,

EPS4. The initial estimate S, confirms the large

uncertainty associated with Qo'

The parameter estimation strategy was to
construct contours of several performance indices
in the parameter space (EPSI, EPS4), for each of
the storm groups CG and SG. The Q matrix was
estimated for each parameter set by the
stochastic approximation algorithm developed.

Three performance criteria were used in an
effort to examine different aspects of the model
performance.

Errors in the total mass of each storm
group precipitation were represented by the
absolute proportional error (APME). This cri-
terion is the absolute value of the ratio of the
l-step predicted residuals mean to the mean of
the corresponding observations for the period
under study. A value of zero represents optimal
performance with respect to this criterion.

The standard least-squares criterion is

represented by the proportional standard error
(PSE). It is the ratio of the l-step predicted
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residuals standard deviation to the standard
deviation of the corresponding observations. It
gives the proportion of the observations standard
deviation unexplained by the model. A value of
zero corresponds to perfect performance with
respect to PSE,

Maximum likelihood estimation is
represented by the average value of the log-
likelihood (ALL) over the period of interest.
The greater the value of this criterion the
better the model performance is. Optimization
with respect to ALL gives the parameter values
with the highest probability of generating the
observed sequence under the assumption that the
model structure is the true one.

4. PARAMETER IDENTIFICATION

The space of the two free model parameters
was divided in grids and the value of each per-—
formance criterion was computed for each model
grid-point for each of the two storm groups
(convective and stratifgrm). The discretization
intervals were 0.24x10 for EPS1 and 0.l2x10 m
for EPS4. Parameter EPSI ranged from 10™% to
0.5x1072 W ile parameter EPS4 ranged from IO-Sm
to 0.2x10"° m. The intervals chosen contain
physically reasonable values for the two
parameters.,

Table 1 presents the optimal parameter
sets and associated criterion values for all
cases. Also shown are the intervals AEPSI and
AEPS4 of EPS! and EPS4 that contain the "optimal"”
set of parameters for each performance criterion
and storm group, and for which: APME was less or
equal to 0.1, and PSE, ALL were within 5 percent
of their optimal value.

Characteristic of the values in Table 1 is
the fact that at the 5% level of the performance
indices PSE and ALL and for values of APME less
than 0.1 considerable overlapping of the
“optimal™ parameter regions occurs. This suggest
robust model structure and parameterization with
respect to storm—types and performance criteria.
The cross-section of the "optimal” parameter
regions for all cases was:

ESP1: 14x1073 to 2.1x1073

EPS4:  0.45%10 %m to 0.6x10 %m

(12)
Table 1 also shows that similar performance—
criterion values resulted for the two storm-types.

Contour plots of the final Q values and of
the coefficient of variation of Q during the
adaptation period suggested:

1) Dependence of Q on the parameter set,
with final Q valges Zanging from 35
down to 0.005 kg“/(m' x sec), and

2) Coefficients of variation ranging from
about 1.5 down to 0.1 with a parameter-
space spatial-average value of 0.4 for
both storm groups.



Table 1

SUMMARY OF PARAMETER-SEARCH RESULTS

APME
cG 86
OPTIMAL
CRITERION VALUE: 0.002 0.005
OPTIMAL EPS1 (x103): 1.32 1.08
OPTIMAL EPS4 (x10%): 1.49 2.0
) 1.05 0.84
AEPS1 (x10°): T0 T0
1.82 1.82
A 0.29 0.35
AEPS4 (x10 ): TO TO
2.0 2.0

These observations confirm the necessity
of the use of different Q values for different
parameter sets if one is going to draw meaningful
conclusions from contour plots of parameter—
estimation performance criteria. The low
coefficient of variation of Q for the adaptation
period and for both storm groups indicates
successful choice of the initial conditions for
the stochastic approximation algorithm. Given
the exponential decay of S(t,) in Eq. (4), it
also suggests short adaptation period.

For the "optimal" region of parameters in
Eq. (12) (SI units) the adaptation algorithm gave
a final Q value:

~

Q 0.01 ng!(mhx sec) (13)

Final
with the Q inal remaining within 10% of the value
in Eq. (135 P all the sets (EPSl, EPS4) within
"optimal" parameter region.

5. VERIFICATION

Several storms from the meteorological
station at the International Airport in Tulsa,
Oklahoma, formed the verification data. This
location represents a radically different
climatic and topographic regime from Boston,
Mass., used in model calibration.

Hourly forecasts of the precipitation rate
were obtained from the stochastic precipitation
model with parameter values:

EPS1 = 1.65x1073

EPS4 = 5.5x% 10 °m
and

Q = 0.01 kgz/(mAX sec)

Figure 1 shows the hourly forecasts of the
precipitation rate in mm/hour (dashed line)
together with the corresponding observations.
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PSE ALL
4 s6 e se
0.74 0.78 -2.02 -2.05
2.31 4.5 1.57 1.32
0.73 0.48 0.61 0.48
0.84 0.84 0.84 0.84
TO TO TO TO
4.50 5.0 3.27 3.27
0.48 0.42 0.42 0.42
TO TO TO TO
1.05 0.67 1.05 0.73

For the verification run, APME took the
value 0,21 and PSE was equal to 0.83., The vari-
ance of the normalized residuals (residuals
divided by the filter predicted variance) was
equal to 1.2 and the log-1, log-2, and log-3
correlation coefficients of the normalized-
residual time-series were equal to -0.13, 0.02,
-0.03, indicating near optimal filter performance.

The model performance was compared to
simple persistence (predictions are the current
observations of precipitation rate) and linear
extrapolation (using the last two observations of
precipitation rate to predict one-step ahead)
models. The ratios of the stochastic model
residual variance to the variances of the
persistence and extrapolation models were 0.92
and 0.38 showing improvement over those
prediction models.

Reasonable values of the physical model
components were observed in the verification
run. For example, the updraft velocity had an
average value of 0.12 m/sec, the average liquid
water cgntent of the cloud column was 1.39
grams/m~ and the cloud height averaged 5.86 km.

Noteworthy is the fact that the
verification values of the performance indices
APME and PSE are close to the optimal values
obtained during the calibration stage for the
climatic regime of Boston, Mass. This supports
the conclusion that the model structure and
parameter values are robust with respect to
changes in climatic and topographic regime.

6. CONCLUSIONS

The two free model para?eters of a scalar
stochastic precipitation model” were estimated
for a wide variety of storms. Simultaneous
estimation of the model error spectral density
was performed based on a stochastic-approximation
iterations scheme that used parameter dependent
initial conditions for the iterations.



14,7

~
ha
T
S
= .8
s .
N~ :

.

.

H
z h
© 8.8 "
- :
< :
= !
o H
= :
(&) 5.9 4 '
uJ N
[s< bR
o i
z 1
S 2.9 (i
[ H
= Nl s

0.0 4 '

100

NUMBER OF TIME STEPS

Figure 1. Forecasts (dashed line) vs. observations (solid line) for the
verification storm group (TULSA, OK). One-hour time steps.

The contour maps of several performance
criteria in the parameter space showed robust
model structure in the forecast of hourly [1]
precipitation rates for several performance
criteria and various storm types (convective and
stratiform).

A verification run with data from a
different climatic and topographic regime
indicated that the model parameters are [2]
reasonably location independent.

Therefore, the model does not appear to
require recalibration for different storms and
locations. This is especially convenient for
real-time forecasting uses.

Contour maps of Q showed dependence of the
optional Q-value on the model free parameters.
This suggests that determination of the
appropriate Q for each parameter set in the
parameter space is vital, if one wants to draw
meaningful conclusions from contour maps of
performance criteria in the parameter space.
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