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Exist{ng routing models for hydrologic systems have either 1) a
complex, nonline;r se;ucture not amenﬁble to second order (i.e., efror)
analysis; requiring considerable computatibnal resources for solution;
or 2) a simple, linear structure that is strictly valid over only a
small flow range about which the model is linearized.

The new pe?spective for routing surface runoff or cﬁannel flow
uses ggz_appropriate’quel, called the primary model, to simulate the
observed physics for ;h; catchment or channel of interest, and then
‘_emulateg the mathematical behavior of Ehe primary model with a
computationally efficient nonlinear shate space model thaﬁ has
structural properties‘amenable to second order analysis. The overall
strategy matches impulse response propertie§ of the state space model to
those of the primary model over a wide range of flow levelé. In

general, impulse response properties vary with flow level.
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Two important response properties are time lag and attenuation.
Nonlinearities in time lag occut because water flows faster as it flows
deeper. Nonlinearities in attenuation occur because deep waves disperse
more rapidly than'shailow waves. These two properties can be\gxpressed
as linear or piecewise linear functions of discharge in log~8pac€,‘:hus
relating them directly to the parameters of a nonlinear state space
model.

The limitations of this approach td routing were examined by
comparing results from éhe nonlinear state space model with a numerical
solution of the Saint-Venant equations. ﬁo’éignificant differences were
observed. The state space model required two to éhree orders of
magnitude less CPU time than numerical solution of the Saint-Venant
equations.

A genetalized,»computationally efficient state space routing model
that can emulate the nonlinear behavior of any ofher fouting model for
downstreaﬁ waves has been developed. Further studies are required to

determine the full usefulness of this modelling.appfpé%h.» :

-—
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: . CHAPTER I . .
A NEW PERSPECTIVE OF NONLINEAR ROUTING

Statement of the Problem

4

Exisfing technology for.routing pﬁs;éa&y flow in open cﬁaunels and
for routing surface runoff in a catchnent‘has not proved adequate for
some importaﬁt“hydrologic épplicatgons. Current routing methods are
either inefficient when numgrbus simulations are required, as in flood
frequency analysis; inadequaﬁe when the forecast requires an estimate of
uncertainty in past or future flow conditions, as in water supply
forecasting; or unsatisfacﬁory when the information coﬁtent‘of current
data is important, as in real-tiﬁe river forecasting. The above
applications require - |

l. an objective estimate of uncertainty,
2. repetitive computations, and/or
3. ‘consideration of second order (i.e., erfor) properties of
models and data-as well as the first ofder (i.e:, mean)
trajectory in time and space of the flow conditions;
as well as requiring models or computational algo:ichm; to account for
significan; nonlinearities of the channel or‘catchment response.

th example, the National Weather Service (NWS), the Bureau of
Reclamation, and the Federal Eﬁergency Managemeﬁt Authority typically
study the thousands of dams throughout'the country by simulating various
dam failure scenarios. .Numerical solution pf the full éaint-Venant

equations can impose a significant computational burden in such



contingency dam break simulations for which repetitive calculations are
required. Simpler models, while computationally efficient, do not
properly account for the nonlinear behavior important to thepe analyses.,

The NWS studies of various possible dam failures are designed to
provide timely and accurate forecasts of expected flow levels to
commnities downstream of the dam in the event of a dam failure. When
the threat of a dam failure is imminent, the NWS Forecast Office can
provide worst case (i.e., instantaneous failur;) and alternative
projected flow conditions to the media and émetgency authorities,
SeVetallcomputgr simulations involving flow routing downstream from each
dam studied are required to prqﬁuce that information.

For daily, real-time river forecasting, as performed at NWS River
Forecast Centers, tiﬁely procéssing of all current observations is
critical. A rapid mechanism is needed to update the conditions
projected by the computer model to account for the most recently
observed data. A state space model of the full Saint-Venant equations,
which yould be amenable to updating with modern estimation theory,
imposes a large computational burden. Simpler routing hodels are‘nst;.
hydraulically adequate over the range of iﬂflow_traq;iénts encbdhtéred
in flood forecasting. Although some simple models‘could be formulated
for use with updating'élgorithms, their forecasting éapabiliky is

diminished.by the limited flow range over which they properly model the

nonlinear nature of water movement. .
Flood frequency studies, such as those performed during the
hydraulic design of channel structures, often require computer

.simulations for many events over a wide range of flow conditions.

Again, numerical solution of the full Saint-Venant equations is costly



and the simpler, linear models do not properly simulate for large

variations of inflow.

Statement of the New Perspective

The new perspective of routing in hydrology is to let any model,
called the primary model, simulate the phystés of a channel or
catchment, and to emulate the behavior of the primary model with a model
structured to meet the appiications,described above. ,This process is
depicted in Figure l.1. To account for the’hodelligg of second order
properties (i.e., variance and covariance measufements of uncertaiﬁty)
and tocsimplify computation, a state space form has been chosen as the

model to emulate primaty model behavior. The state space model

structure is

= . + . ' .
§t+l EX,t 5( EX,: E-t+1 S (1.1)

where X, = the system state vector,
Fy ¢ = the state transition matrix,
—y

Ex,t = the input coefficient matrix, and

Upyy = the vector of system 1nputs.

The strpcture of a state space model is possibiy the only one that
meets the previously»described objective of simplicity and has the
potential fof simulating second order properties. The state space model
can be used with modern estimation theory in a Kalman‘filteringA
algorithm to propagate and update both mean and vafiance properties of
the channel or catchment. The primary godel simul;tes the physics of
the hydrologic syscem while the state space model, because of its
desired computational and structural properties, emulates the

LTI

mathematical behavior of the primary model.
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The essence of this new perspective of rout;ng is {ts two-step
approach to the problems encountered with existing routing technology.
First, the physics of the system are modelled with a primary model, then
the mathematics of the primary model are emulated by a sFate space

model. The state space model 1s a model of the primary model.

Development of the New Perspective ' ?

Overview

‘ Several steps are fequired to apply this new perspectivé t&:a
routing problem of interest. The steps are
1.  select a primary model,
2. calib:ate the primary model to the hydrologic system,
3. determine the appropriate structure for the state space
model, D
4, calibrate the state space model to the primary model, and
5. emulate the prima;y model behavior with the state space

model.

Selection of a Primary Model

°

The primary model simulates the physics of a channel or
catchment.‘ %ecause, in general, the forces governing t%e motion of
;ater interact in a complicated manner, a complex model typically will
be most éppropriate ﬁo describe the physical properties of the
hydrélogic system. However, the primary model does not have to be

complex. Any simple model can be chosen to simulate the system physics

based on data or computational limitations, or modeller preference. A



summary of some available channel routing models is presented in

Appendix A.

Calibration of the Primary Model to the Hydrologic System

The effort required to calibrate the primary model will vary
greatly depénding upon the complgxity‘of the primary model chosen. If a
physically detailed hydraulic model is selected, channel cross-section
data must be obtained and reduced to the form required by the model.

" This requires a.complicated process of adjusting friction factors,
determining active versus inactive flow area, etc. For simpler models,
the calibration process usually requires determining a few parameters
based on the comparison of simulated and observed data for some past
inflows. Parahgter selection for simple models can often b; automated,
given'inflow and outflow records. ﬁ;en for some complex hydraulic

_ models, final parameter adjustment can be performed automatically (Fread

and Smith 1978). o

‘c

Structure of-the State Space Model

P

. The mathematical properties of the primary model caﬁ be
rgpresented in numerous ways, given the general structure of equation
l1.1. The system states (i.e., the elements of the vector X) can
represent‘many possible quantities. The states of the surrogate model
are determined by the important relationships in the primary model.
State space models of hydroiogic systems can be constructed with
physically based states such as the quantity of water in a reservoir

(Szollosi-Nagy 1981) or with states which are purely mathematical



artifacts that reproduce observed system behavior (Goldstein and
Larimore 1980). In fact, the full Saint-Venant equations can be
expressed in state space form. At each time step, values of flow and
"cross-sectional area at numerous points along the channe} represent the
state of the system. The state vector, Xp» could be constructed from
these flow and area values. However, since the number of points defined
along a'channel typically is large, the state vector would be
correspondingly large. For example, some NWS applications of the
Dynamic Wave Operational Program (DWOPER), which .numerically solves the
| Saint-Venant equatioﬁs (Fread and Smith 1978) have ZS’an& 45 points
defined along the channels, respectively, for the Colunbia-Willamétte‘
River system and the Ohio-Mississippi.River junction. The state Qeétors
for these systems would consist of 50 and 90 elements, respectively,
with state transition matrices of 2500 and 8100 elements. Obvious
dimensionality problems arise in the computer solution qf equ;tion l.1
for systems of these sizes.

The structure of the nonlinear state space model developed is
presented in detail in Chapter IV. The approach taken uses the

s

nonstationary linear structure of the state space model as a surrogate

for the stationary nonlinear behavior of the priﬁary model.

Calibration of the State Space Model to the Primary Model

Problems encountered in certain routing applications can be solved
by using the state space model to emulate the mathematical behaVior of °
the primary model. Since the state space model is calibrated to the

mathematical properties of the primary model, many approaches are

possible.



The approach taken here draws on the genera;, powerful theory cf
linear systems. As described in Chapter II, the nearly linear behavior
of the primary model for a small flow range {s emulated with an
equivalent linear.system. This is accomplished by matching the impulse
responges of the primary and siate space modelg for small flow;tanges
.abouc various reference discharges. M

The inherent nonlinearities that cause the behavior of the state
'gpace modéi to agree with or to depart from the primary model behavior
ar§VQAriations'vith discharge of the lag and dispersive properties of
the impulse response function. Thesé properties vary substantially over
large changes of inflow. A simple functional ;elationship can be
derived that specifies the variation of F and G with discharge to.
emulate properly the lag and dispersive properties. Given such a
functional relationship, the state space model can emulate the full

nonlinear and dynamic behavior of the primary model over all flow

ranges.

The State Space Model as Surrogate for the Primary Model

éimple linéar %odels have been used in place of complex routing
models for many years. They replace the complex model, but do not
properly represent some of the Jlmportant properties of the comblex
model. Wiéh ths new perspective, the primary model is not replaced.
Ithead its mathematic;1 s;ructure is emulated by a state space modéf
with computational and‘structural properties appropriate for the

solution of problems encountered in many routing applications. the

state space model acts as a surrogate for the primary model.



The state space model typically has much lower dimensionality than
the primary model and imposes a much smaller computational burden.
Because the gstate space model emulates the full nonlinear behavior of
the primary gbdel, it can be used in applicatigns where the primary
model is not appropriate for error analysiQ because of the computational
burden or improper structure. This afproach presents a model
mathemacicaliy equivalent to the primary model, that can be used on

‘sméller computers than woul& be possible with the primary model itself.

An Application of the New Perspective

v
To  explore thé new perspective's applicability to routing in
hydrology, the general steps described above were followed for a |
specific primary model. Ag shown in Figure 1.2, the aéplication
selected was the full, nogline;r Saint-Venant equations as the exemplar
primary moéel‘to siﬁulate downstream flow in a prismatic channel. "This
primary model and physical system were chosen bécause

l. the Saint-Venant equations are generally recognized as the
‘ﬁost complete representation of unsteady flow phenomena,

2. an analytical solution for the impulse response of the
Saint-Venant equations can’be derived for aownstream wave
movement in prismatic channels, and

3. ‘numerical solution of the Saint-Venant equations is
well-studied, and many excellent solution algorithms are
availaﬁle for comparison with the éutrogate model (Liggett

and Cunge 1975).

° Analysis of the ability of a state space model to emulate the

behavior of the full, nonlinear Saint-Venant equations should lend
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insight into the applicability of this approach for other primary
models. Because, in general, no analytical solution for the impulse
" response of the primary mddel is available, the case chosen allows
comparison of the true impulse response with results obtgined

numerically.

Organization of the Dissertation

The organization.of this dissertation is schematically presented
in Figure 1.2, The newnperspectiv; of routing and the reasons for
selecting the Sainé—Venant eguations ag the exemplar primaty model have'
been presented. A linear analysis of the Saint-Venant eéuations and
development of a linear state space model follow in Chapter II. In
Chapter III, results frop the linear state space model‘are compared with
the full Saint-Venant equations for small inflow transients about a
reference flow level. Thede results indicate that the linear state
space model is a very adequate surrogate for the Saint-Venant equations
over small flow ranges. Further nonlinear studies are motivated by
comparison of the linear state space model with the primary model for
large inflow hydfographs. Nonlinear behavior of the primary model
causes the comparison o% results with the linear state space model to

deteriorate.

A nonlinear analysis of the Saint-Venant equations primary model

[}

;nd the development of a nonlinear state space model are conducted in
Chapter IV. Chapter V ié devoted to the verification of results for the
nonlinear state space model versus the primary model for large inflow
hydrographs. Results from the primary and surrogate models for a

complex inflow hydrograph were compérable.» However, the nonlinear state .
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space model used two to three orders of magnitude less CPU time than the
numerical solution of the Saint-Venant equations.

A gen;ral procedure to emulate any primary model with the
nonlinear state space model is ptesen:ed‘ln Chaﬁter VI. By following
the steps here described, the nonlinear state space model can bé ugsed as
a surrogate for any channel routing or surface runoff mo@el.

The relationship of the curreﬁt work - to previou§ studies of
routing in hydrology 1is the subject of Chapter VII. A review of
pertinent wdrk'by'pchgnﬁaucﬁors, some data to support the éover function
relationship between flowmlevel énd time lag, and ; Somparison of the
nonlinear state space and Muskingum-éunge mbdels with the fullv ‘
Saint-Venant equations are the major topicé of this chapter. ‘

Conclusions on the new perspective of routing in genefal,'and on
ites application to the exemplar primary model in particular, are stated
in Chapter VIII. Recommendations for future work, iﬁcl&ding the
necessary taskskfor the application of esﬁimacion theory with the
nonlinear state space model and possible alternative approaches for
representing the nonlinear modgl structure, form\the finél portion of

this last chapter.
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CHAPTER II » -
INSIGHTS INTO NONLINEAR ROUTING FROM LINEAR SYSTEMS THEORY

Linear Systems Theory

Introduction _ ' . -

A -

Linear systems thedry ?tovides many tools for the analysis of
linear phenomona. Linear systems«tﬁ;ory,'strictly applied, would have
few uses because, in géneral,~the only truly linesr'sistéms are
mathematical abstractions. However, the spiiit of linear systems
analysis lends itself to unraveling those aspects of nonlinear systems
that behave in a nearly linear manner. The phenomenon of routing in
hydrology is, in general, a very nonlinear proceés. Névertheless,
important insights into hydrologic system behavior may be]gained by
applying some of the tools of linear systems theory.

" The concepts of linear systems theory have heen applied to many
and varied systems and are Qellrknown. Those concepts germane to this
work are summarized below. C N

Systems can be thought of abstractly as the mechanisms that
interrelate two objects (Dooge 19;3. pp. 3-4). T;e operational
definition used in this work {s that a system is :the brocess that
transforms input signais into output signals.. For the hydrologic
processes analyzed here, the complex relationships among the forces

governing the motion of particles of water are conceptualized in a

system as shown in Figure 2.1. The value of this view of a system lies

13
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in the analytical tools it provides since the mathematical properties of

the system determine which tools are applicable.

Properties of a System

The properties’of congequence for hydrologic systems are whether
the system 1s
a. determinsitic or probabilistic;
“b. distributed input/distributed output
¢. causal, . -
.d. stationary, and
e, linear.
Typically the response of a time-varying, nonstationary, distributed,
probabilistic, nonlinear hydrologic system is simulated by a time
invariant, stationary, lumped, deterministic, linear model. And we
wonder why there are discrepancies between observations and simulated
outputs!

A system is determinsltié 1f the precise state of the system (tﬁe
values of X in equation l.l) can be foretold. If a raddom component is
introduced into the vafiation of the system states, the system hecomes
probabilistic. |

The inputs and oucputé of most hydrologic systenms do not interaét‘
at a single point. As such, there should properly be some spatial
description of the system processes., The complex, dynamic;‘nonlinear>
models of channel routing of surface runoff typically account for some
of the spatial variatign'of parameters over the channel or catéhment.
The parameters of simple linear models usually aﬁply over the entire

channel or catchment area and, therefore, such models operate as Lf all

o
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1npu:!outpnt interactions occurred at a single point (i.e., they are
lumped models).

In general, a system can have several inputs and outputs as shown
in Pigure 2.1. The hydrologic systems analyzed in this work are assumed
to have a éingle input and a single output.

A causal system is one in which outputs cannot precede inputs.

All physical systems are caﬁsal. This rgstriction limits the'range over
which integral equations describing the system are applied.

| The sé&tionarity of & system 13 defined by whetger or not the
inpn:foutpuc relationship changes witg :ime. If a gystem is gstationary,
identical input proﬁuces identical output. ‘

Linearity is the propérty that opens the doors to the storehouse

of mathematical tools. If system inputs are defined as xi,'sygtem

outputs as yq» and the transformation of x into y by the system is

symbolized as > , then given

x ____bvy and X —>y
1 1 2 2

a system is said to be linear if

a *x +aex —_— a 'y + a oy (2.1)
[ 2 2 °41y‘i.z'2 :

where a, and‘az,are constants (Thomas 1969, p. 140).

The analysis of nonlinear systems is much more difficult than that
of linear systems because the princip}e of superposition applies to
‘linear systems (Thomas 1969, p. 139). Superposition, which follows
'directfy from-the définition of %inearity, says that {f inputs. are added
or scéléd; ou;puts'are similarly added or scaled. Therefore, the'system
behavior can be analyzed independently of the inputs. This is a point

of great significance: 1if the system output for am instantaneous unit

a
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input can be found, the system behavior for any input can be obtained by
considering the actual input as a series of scaled unit inputs at
various instants of time (Liu and Liu 1975, pp. 135-146). Given the
system output for an instantaneous unit {nput (called the impulse
response), the output for a stationary linear system can be obtained for
any input with the convolution integral

a

t . .
y(e) = [ h(e=t)ex(t) dv (2.2)

-

a

where x(*), y(*) are the system inputs and outputs respec:ivel}, an&
h(+) is the system impulseﬁresponse (Johnson and Johnson 1975, -
pp. 137-140).

Stationary nonlinear behavior can sometimes be simulated by a
nonstationary linear model. This is, in faét, exaﬁtly‘the strategy
Sehind the nonlinear state space model &eveloped in Chapter 1V. The
theoretical basis is most clearly seen by recognizing that for a linear
model, the input/output relationship can be represented Sy matrix

multiplication as s

1 2 3 m 11 . 12 13 i
O h h . . .
22 23 .
O O h . . . )
-3 (2.3)

where I; = the input at time i, an element of row vector I,

0y = the output at time j, an element of row vector 0, and

hi,j = an 2lement of the input/output relationship matrix H.
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Note that I and O are time vectors, in contrast to the state vector X of
equation l.l. nMatrixig_transformsnz_intd.g, What we want at any time,
¢, is ‘o generate one entry, Ops in vector 0. To do this we need the
appropriate weights to apply to all inputs I, yp to and inclu“ding I..
These weights will fill one column of matrix H., However, it is -
physically 1mpossiﬁ1e~to observe the weighting function of a~s§stem., An
approach whicP circymvents that problem is to generate the model impglse
respénse. This is equi;ageq:.to solving for_é_in equation 2.3 when_z_is
all zeroes excepf for a ﬁiﬁgle entry of 1 {n, say, the 1th 1ocation.
Call this vector § , ?hé output, 0, generated will be the 1‘“,52!,of
m#ﬁrixlﬂ: The input, éi;°se1eccs the ith row of H and presents it as
the outqu,_Q, "For a linear nonstationary system the rows of H will, in
general, be different from each other (i.e., each row, {1, will represent
the system impulse response at time 1). The assumption implicit when
using a single system impulse response in the convolution integral is
thag the system is liﬁear and stationary. In this case, the 1th row of
'i:will be equal to the (1-1)th row of H shifted one position to the

right. Therefore, equation 2.3 can be rewritten for a stationary linear

system as

I h h "h h - . . h

- 1 2 3 u m
0 h h h . . . . .
l 2 3
0 O h h 3 . . .
1 2
0 0 0 h =« =+ + =« | =0 (2.4)




The desired weighting functions (i.e., the columns of H) are seen in
equation 2.4 to be the time-reversed images of the system impulse
respon§e for a stationary linear system. Figure 2.2 shows how the
convolution igcegral (equation 2.2) exploits this to compute the system

output.

. Nonlinear system behavior can bé modelled by letting the columns
of~§:inoqupt£6n 2.3 vary each time step. The elements on any diagonal
will not be equal, as 1srthe case for the line;r séacionary sttem
fepresented by equaclon Z.g; Therefore, the s;scem impulse response
(the rows éf;g) will change each time step, thus permitting a
nonstationary lineaf model ﬁo account for stationary nonlinear
behavior. The state space model developed in Chapter IV emulates the
nonlinear system behavior by varying the weighting function based on the

. level of flow.

)
A General Linear NDifferential-Equation

Linear ;ime—invarianc equations can be used to approximate the
behavior of many phy;ical systems. This is a goed approximation when
system characteristics qhaﬁge very slowly relative to variations of the
inputs (Ogata i967, p. 307). Channel;aﬁd~cacéhment sy;tems.can.be well
represented by linear tfﬁe—invarianc equacions;

A-genetal.differencial equation for a nonstationary linear system

can be written as

n : n-1
a (0088 4, () d XO

n dtn n-1 dtn—
: (2.5)

+ al(t)°éz§§l +,a,(t) y(e) = x(t)



L

20
TIME-REVERSED IMAGE
OF THE SYSTEM
IMPULSE
C
L
"._“"-"‘ - ]
1
TIME INTO THE PRST (<) v :
e — - —— - 2t ¢ e ......-__-....._-......_.-: "
(L=<)=0 (=gt —od
]
]
s} :
! !
g } :
] 1
; !
E | |
i 1
? !
H 1
E : '
- t
"’?"\\. (PRESENT)
]
?THE CHANNEL OUTFLOW AT ANY TIME IS E
' A WEIGHTED AVERAGE OF THE PAST AND '
> . PRE I . THE TIME-REVERSED ! —
S | IMAGE OF THE SYSTEM IMPULSE RESPONSE '
i REPRESENTS THE WEIGHTING FUNCTION. !
. 1
§ i :
" .
) ! ]
]
> i
= ]
g h ' * : .
E E 0tt)= fhie) Tt-<de
'
]
]

(PRESEN‘U

Fizure 2.2 Calculation of Channel Outflow with
the System Impulse Response Function



where  x(t) = the system input,
y(t) = the system output,
ag(t), a1(t), « + «» ap-1(t), a,(t) are coefficients, and

the initial conditions are specified for

dy(tg) 4% ly(eg)
Y(tﬂ)’ —%t-ﬂ_., o e e &nd'—-n:—lL.

The system is linear because there are no powers or products of y.

Equation 2.5 can be rewritten in matrix form as

21

g;ﬁzxt)) - A(e)¥(t) = B(t)*X(t) : (2.6)
whére ’ . >
y(t)
dy(t)
. dt
Y(t) = : ’
a"lyco
dtn—l
0 1 . . 0
0 ) 1 0 0
Aty =] 0o 0 0 :
0 0 0 o1
- ao(t) - al(t) : . . 3 : . - an—l(t)
a&(t)- an(t) ' : ‘anfc)

MO =gy and

n
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x(e) = | .

x(t) ‘ ’ s A

If the system is stationary the coefficients A(t) and B(t) of the
underlying differential equation 2.5 are not functiong of tilmes  In this

case equation 2.6 can be rewritten as

o

g_t_(g_(c)) - A Y(r) = BeX(t) (2.7)
which can hbe solved using the integrating factor e‘té-to yield
(t-tg)A f . (t=t)A o
Y(e) =e S Y(eg) +[ e T T USBex(r) dr o . (2.8)
to :

(Ogata 1967, p. 315).

The firsi term on the right hand side of equation 2.8 is the zérok*
input response of the system, With no input the system would move ’
towdrd equilibrium starting from this point when t = ta, The second

term is the zero state response, which describes the motion of the

system driven by input X(t) for ty <1 <t

o

[

Transformation of Moments by a Stationary Linear Svstem

One way to describe a system's input and output signals is to

. study their moments. The following section, on the use of transform

>

methods to study moments of stationary linear systems, is based on work

-

by Dooge (1973, pp. 113-115).

The REh moment of a function about the time origin,is
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" R
Ug(f) = [ £(e)ee de (2.9)
«
and the Rth moment about the center of mass is

U (E) = [ f(t)'(c-U;)R,dt : : (2.10)

The output signal of a stationary linear system can be expressed
with the convolution integral (equation 2.2) in terms of the input

signal and the system impulse response. . The relationships between

3

3

moments of the input, output and impulse response’ are most easily seen
by transforming equation 2.2 with either the Fourier or Laplace
transform. Since moments ébout the center of mass of the input and
output signals are of 1n:erest,.we will use the bilateral taplace

transform defined by

Fo(s) = | £(t)+e 3% dr ' (2.11)
where f(t) is a function in the time domain.

Differentiating equation 2.1l R times and setting s = O produces

El

‘the following expression for the RtN moment about the origin in tetms of
the Laplace transform (Dooge 1973, p. 114).

ﬂ A R dRr :
Ug(E) = (-1) .;FFB(S)]S'Q (2.12)

fhe convolution integral can be expressed in the transform domain by

a D)

taking the bilateral Laplace transform of equation 2.2 to yield
4 -
- . o ean ]

where Yp(s), Hp(s) and Xg(s) are the Laplaéé transforms of y(t), h(t)

and x{(t), respectively (Dooge 1973, p. ll4).

.
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The Rth moment of the output about the origin follows from equation 2,12

as
R, &8
Uy = (--.1): '?‘—;ﬁ{‘fa(s)]s’_.0 o (2.14)
Substituting equation 2.13 for YB(,) gives
R dRr ’ .
Ug(y) = (-1 ';;ﬁt“n(”'xn<”]s-o (2.15)

Solving equation 2.15 with Leibnitz's rule for continued differentiation
of a product, and substituting for the moments with eqﬁatioh 2.12 yield

R

R » '
Up(y) = kzo(k)'Ué_k(h)‘Ué(x) S Qae
where (i) indicates a combination of R things taken k at a time, or
(R) - R!
k kI*(R-YT

Ué—k(h) = the (R-k)tN moment about the origin of the system

@

impulse response, and

UL(X) = the ktN poment about the origin of the system input
signal (Dooge 1973, p. 114).

) —

I1f, instead of about the origin, the moments are taken about the

centers of mass of the input, output and system impulse response

functions, the following relationship holds (Dooge 1973, p. l15)
<
Q R R\
Ug(®) = L ((J+Up ()0 (x) (2.17)
k=0
Only the first moment about the origin and the second moment about the
center of mass are needed for the ensuing works For R = 1 equation 2.l6

reduces to

U{(Y) - U;(h) + U{(x)" . (2.18)
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Since Ul(’) = 0, for R = 2 equation 2.17 becomes

Uz(y) - Uz(h) + UZ(X) ’ (2.19)

Therefore, for the first moment about the origin (the time lag) and the
second moment about the center of mass (thé variance), the moment of the
_ gystem output tg the sum of the moments of the system impulse response °

and the system input (Dooge 1973, p. 115).

Summary

The impulse response is the output generated by an instantaneous
unit input to a system. Because the impulse response function
completely describes the behavior of a stationary linear system, we
would like to determine the impulse response of the c;annel or catchment
physical systems. The best description of the real world that we have
{s the primary model. ‘The goal of linear analysis of the system is to
determine the impulse respbnse of the primary model at various reference
flow levels. The changing properties of the impulse response function
with flow leve¥ lend insight iato the nonlinear behavior of the physical

Csyscem.a J

An operational way to determine the impulse response QE the
primary model is to pulse the modei with a unit input and observe the
outputl That is, in general, the appfoach that will be taken-tg find a
gystem's impulse responsé._ An analytical solution can be found for the
impulse response of the Saint-Venant equations of unsteady flow for
downstream waves in a prismatié channel. ToAdetive the impulse

response, the Saint-Venant equations must be linearized about a

reference discharge. This process is described in the next section.
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linearization of the Saint-Venant Equations -

for a General Prismatic Channel

To determine analytically the impulse response for routing
unsteady flow, gh; Saint-Venant equations must be line;:ized in terms of
small perturbations about a reference flow condition. The'steps
presented in this section are outlined in Figure 2.3. Dooge (1973, pp.
. 245-253) presented the special case for linearizing the Saint-Venant
equations for-a rec;engular channel and Chezy fric:ion formila. Th;
ensuing derivation follows Schaake (1980) who extended Dooge s work for'

a gene;al prismatic channel and resistance formula.

The Saint-Venant equations for unsteady flow can be expressed as

A 30 _ .3y  3(Av)
. 3t 3—)2 Bs—-+T q ) (2:20)
and
l3v 3y  vdv _ - _ '
Tttt Tt S TS, g_'_»[ux v) (2.21)
where A = cross sectional area,
Q= dischargg,
t = time,
x = distance along the channel,

v = average velocity,

depth of flow,

~<
L}

surface width of £low,
&

[+ -]
]

lateral inflow per unit width,

Fol
]

.ux = the x component of the velocity of the lateral inflow,

g = the acceleration of gravity,

Sg = the friction slope, and
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S ™ the channel bottom slope (Henderson 1966, p. 287).
Equation 2.20 is the continuity equation for a channel. The effects of
the forces acting on a con:tol'volune within the channel are modelled.by
equaiion 2.21, the momentua.equation.» Since th} conciuuity'eqﬁation is
already linear, only the momentum equation rghpirea linearization.
Equation 2.21 is first rewritten‘in terms of the dependent
variables Q and A. To this end, the friction term and channel geometry

are expressed as

£

-

kaag = k'(%ﬂ /S_ . | , ' (2.22)

and o

-

B = 30~A” (2.23)

where B‘is the top width,

B, is the top width for flow Qy» and:

k, p and r are described below.
Equation 2.22 is a general relationship for friction in open channel
flow which_c;n be related to the well-known Manning or Chezy friction

formula., With the approximation

A ‘ .

o
i
ro| 3

o

where Ry, = the hydraulic radius and
P = the wetted perimeter.
Equation 2.22 becémes Chezy's friction formula with

and ' _ (2.25)

or Manning's friction formula with
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k = 1.49/n

and - . (2.26)
p = 2/3

where C= Ehe Chezy flow resistance factor and

a = the Manning flownresistence f;c:o: (Daily and Harleman

1966, pp. 297-298). "
Equation 2 23 can approximate most regular cross sectional shapes. For
a rectangular channel r = 0; while for a triangular channel r = 1/2.
‘However, 4 Eraﬁezoidil channel is not well modelled by equation 2.23 for
all flow ranges. For shglloﬁ flow Q trapezoidal channel behaves
gimilarly to a rectangular channél; while for deep flow it can be
approx%mated by a triangular channel. There is a transition flow range
where equétion 2.23 does not represent the change in top width with area
for a trapezoidal channel.

gubstituting 2.23 iato 2.22 and rearranging gives

ng'QZ |
S, = (2.27)
£ ;? .A2[p(¥ T)+l] :
a

Let

m = p(l-t)+l - ° T ()
and

. K'/S '
a = =2 - : (2.29)
P TP
0

where m 1s analogous to the dimensionless kinematic wave parameter

defined by Eagleson (1970, p. 250).

3

Substitution of 2.28 and 2.29 into 2,27 gives
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2
-0
S "7 =5, : (2.30)

a“*A

Substituting equations 2.20 and 2.30 into the momentum equation gives

® 3 [ 3 2 aA L (] .aQ . z.aQ -
(gA-BQ)r+an-A3..i.+BA ~
(2.31)
g B-A3+ros 2B QZ A34-:-—2:11
. 0 2

where henceforth the terms involving q will be ignored because we are

studying prismatic channels with no lateral inflows. Finally,

.

differentiating 2.20 with respecf to x, daif»ferent'iating 2.31 with
respect to t while holding the left-hand coefficients constant, and

32A
equatiang the common TEIE term, results in

32q 329 _ 32q
(-———\}2)'——— 2-v0 - e, W

B 32 X9t g2

(2.32)

0,39
2mgsg?}?+"_"’at

Linearizing equation 2.32 about QO, AO ) and By forms the linear,

second order, hyperbolic equation

: 2 2
(g.A VZ) Q - 2.v . a Q - a____.Q =
B, 0 a2 0 IXTE 52
(2.33)
2*g*S
. o L] laQ 0'-3-9
2*m g 0 IxX + v it
0 ©
where Ay, vy and B, are the cros-s sectionai area, velocity and top

width, respectively, for the reference flow, Q (Schaake 1980).
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The impulse response of the linearized form of equation 2.33,
presented in Appendix A, is a complex. -function containing a Dirac delta
and a modified Bessel function (Harley 1967, p. 18). A simpler,
approxXimate solution can be found with an assumption from kinematic wave
theory. rﬁh“%Q-ac and 3t? terms of equation 2.33 can be replaced by a

3 term using the relationship

°

3 3 -
- 5.%. -c.é : : (2.34)

where

o ' .
c = %é (the wave celerity). : ‘ .

This substitution is routinely made in the derivation of diffuslon
routing equations (Koussis 1976). Here its use results in the

simplified linear approximaéion to the complete equations

Q 2
3Q 8 o . 2y,3°0
Tt + co — 7:__B__._g.._.[l-é ) = ‘ (2.35)
0 0 3
where
92 = F‘g'[lﬂn(?—m)] ’ (2.36)
in which’
Q /A
F =00 (the Froude number at 0 ) : (2.37)
and '
c0 = m'vg (the kinematic wave velocity) (Schaake 1980). (2.38)

The diffusion form of equation 2.35 appears often in channel and
pollutant transport modelling (Fischer 1967, Carslaw and Jgeger 1959,

Bansal 1971). Koussis (1976) followed a derivation similar to the one
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presented ahove, but was interested in a simpler numerical solution to
the Saint-Venant equations, not an analytical one. The interest in this
section 1is iy an analytical solution to equation 2.35. This will
provide the theoretical basis for comparison of results from a numeriical
solution of the full Saint-Venant equations, and the linear and
nonlinear state space models deve;oped later ia this chapter and in
Chapter 1V, respectively.

The influénce of all terms in the Saint-Venant equations has been

a

retained in the parabolic form of equation'2.35. The ihpurse response

-

function of equation 2.35 is

(x-c t)? o
h(x,t) = ;—-—ji————'exp{— ‘37131?'4 S ' (2.39)
. GemeDe 3 )
where
00 2
D = W[M ) | | (2.40)

] (Harley 1966, Schaake 1980). The impulse response, h(x,t), defines the

flow for all positive x and t., The area under h(x,t) is unity,

(i.e., f h(x,t) dt = 1) to preserve contidugty, and the units are’
0 .
time~l, Equation 2,39, the solution for an instantaneous input at

X =0, t =0 in equation 2.33, appears in maay scientific disciplines as
a solution to the advection-diffusion equation (Carslaw and Jaeger 1959,
p. 50). Since the diffusivity, D, 1s constant for any reference flow,

QO’ Fickian diffusion is represented by equation 2,39 (Slade 1968,

PP 80-81)0 ¢



Ingights from Linear Systems Theory -

Introduction

The analytically derived impulse response for the Saint-Venant
equations is strictly éortect only for small variations about the -
reference flow. In the spirit of linear approximations for nonlinear
systems, the 1mpuise'response can be used to approximate the channel
response for all flow ranges, as is shown in Chapter III.

Equation 2.39 comple:eiy describes the response of the general
prismatic channel for flows close to Q,. This analytic solution can be-
manipalated to gain insights into the behavior of the Saint-Venant .
equations, from which 2.3§ was‘detivéd.

The Gaussian form of the solution of equation 2.39 for fixed t is
well known (Crank 1956, pp. 9-11). )However, Schéake (1980) recognized
that for fixed x the form of equation 2.39 is an inverse Gaussian
probability‘density function (pdf). Given this insight; a wealéh of
{nformation can be obtained from previous studles of this statistical

distribution (Johnson and Kotz 1970, pp. 137-153).

The Inverse Gaussian PDF as an Analytical Solution of the Unsteady Flow

Eguations

Since 1871, when Barre De Séint-Venant proposed the equatio&s of
unsteady flow in an open chanpél; people have sought an analytical
solution for equatibns 2.20 éndQZ.ZI. No analyticql solution to tﬁe
full Saint-Venant ehuacions has been féﬁndu ;n énalycical expression

for the outflow hydrograph would bhe ideal for studying the behavior of a

channel. However, the ideal has not been attained because, in addition
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to the lack of an analytical solution of the Saint-Venant equations,
there is no analytical expression for a general inflow hydrograph.

There is, however, an analytical solution to the equations of
unsﬁéady flow for a special class of inflow hydrographs in & prismatic
channel, B;cauge equation 2.39, the equation for an inverse Gaussian
pdf, is the response for an impulse input to a prismatic channel, an
;nvetse Gaussian pdf can be observed at any point along the channel.
Parameters of the inverse Gaussian pdf are determf%ed by the channel
properties and the distance,>x,'ftom the point at which the impulse is
idput; As shown in Figure 2.4, an inverse Gaussian pdf with x = xn; L
is the analytical expressioﬁ for the outflow hydrograph when an inflow
hydrograph is specified by an inve;se Gaussian pdf with x = X, Channel
properties determine the parameters ¢, and D of equation 2.39. This
means that for the élass of iaflow hydrographs defined by inverse
Gaussian pdfs, the outflow hydrographs from a prismatic chamnel are élso
inverse Gaussian pdfs (Sghaake 1980)! This is of great significance
gecause the parameters of the outflow inverse Gaussian pdf are relate§
fimpl? ;o the parameteré of the inflow inverse Gauss%ip pdf aéd the
channel properties.

>

Moments of the Inverse Gaussian PDF

The time delay and dispersioan characteristics of 2,39 are
expressed by its first two moments (Johnson and Kotz 1970, pp. 137-

14Q). The first moment about the origin (i.e., the mean) describes the

time lag properties as

K o=, = S (2.61)
1 9.» (o4

¢
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The second moment about the mean (i.e., the variance) describes the
dispersion properties as
. Qox
ko =o? =0 (147 (2.42)
2 B ¢S ¢ -
0 0 O

The coefficient of variation, a dimensionless measure of the impulse
response, can be obtained from 2.41 and 2.42 as

1/2

Im - |
] -_9_- ’ 2 2 ;
S TE T i;ﬁ'o’i‘%—-x'(l“ ) | | (2.43)
_0 0,0 -

The form of the coefficient of variation, equation 2.43, indicates

that the kinematic wave assumption is most nearly correct for shallow
Q, :

flow (small i—:%b ) on steep slopes (large So). Woolhiser and Liggett
0 0

(1967) define a dimensionless parameter to determine when the kinematic

wave assumption is appropriate

lim_ =0 0 | (2.44)
H «F2 ,
Q0 1]

where L., = characteristic length,
S = channel hottom slope,
Hy = depth of flow, and
F = Froude number.
I kg, > 10, the Saint-Venant equations are approximated well by a
kinematic wave solution (Eagleson 1970, p. 336). These conditions are
generally met by overland floQ, with its shallow depth of flow and steep

" slopes. For river channels with steep slopes, the S, term of the

momentum equation dominates, making the kinematic wave assumption a good



approximation of the Saint-Venant equations. For rivers with flat

slopes, the S, and %% terms are dominant in equation 2.21 (Hendersom

1966, p. 364). The diffusion analogy model, discussed in Appendix A,

uses only these two terms for channel routing.

]

The Inverse Gaussian PDF as an Inflow Hydrograph

The interrelationships between peak flow (Qp), celerity (cg) and
" timing properties (as measured by the variance, din) of the inflow
hydrograph can be expressed for a given total flow volume ®)

(Schaake 1980). With these relationships several properties of -

hydrographs~input to routing models can be controlled. Any three of Qp» ~°
Cys cin or ¥ can be specified arbitrarily. Since equation 2.39 is the
solution for a pulse input at x = 0 and t = 0, we will define a point
downstream at x.’ X, to observe the flow for t > 0. Wwith this notation
and h(*,*) defined by equation 2.39, the total flow volume, fnflow

3

s hydrograp%, and peak discharge are, respectively,

o

¥ = Q(x ,t) dt = [ ’o"h(xo,t) dt = ¥ h(xO,c) gt (2.65)
0 0 ] Q
- e , ’ (2446
Q(xo,t) | ¥ h(x0 t) ( )
s - yeh(x, : 2.47)
Qp (xo tp(xo)) -«

S g Y

where h(x,t) 1s a maximum when

|~ c*x )

3D 2,1/2 _

€00 = = | e (55" 1| (2.48)
0
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By choosing any three of ¥, Qp: cin and ¢;» @ hydrograph with
certain desired properties can be selected. Since equation 2.39 defines
the response to an impulse input, an invgrae Gag:.ian shape hydrograph
can be observed at any point along the éhaqnel. The channel can be
divided into two sections as shown in Figure 2.4. The upstreaa,
ficticious sgction has an impulse input and produ;es an ihverse Gaussian
pdf 6u:flow hydrograph which becomes the i{nflow hydrograph for the
downstream, real channel of interest. When an .impulse is input to the
upstream section at x = 0, an inverse Gaussian pdf appears as input to
the downstream section at x = X The variance of the flow tranaieqt as.
‘ ,i'-:ic‘(oiﬁ}‘éan be selected by proper choice of x,. Letting 62 and x

of;equation 2.42 equal a%n and xo; respectively, givés

Q-*x
G2 = 0 9 .(1_¢2) (2.49)
in 3
B S *cC
i 0 4] 0 3

Substituting equation 2.40 into equation 2.49 simplifies the expression

.for the inflow variance to

2¢D* x

= 9 A > (2.50)
2

0 0.

cz
in

The parameters D and ¢, are specified by the channel geometry and

slope. The value of xy ¢an be arbitrarily selected to give the desired
. Q

{nflow variance. Equation 2.50 can be reérranged to solve for Xy as

3eg?

X =_.°_27‘§_'l (2.51)



39

The channel section where 0<x<x is a ficticious reach designed
solely to generate an {nflow hydrograph with degired properties for the

real channel being modelled. This real channel is defined by the

X9

channel. The outflow hydrograph is also an inverse Gaussian shape with

<x<x+L channel gection where L is the length of the real

variance
) PW(%+L)
B ———————
_éput > . (2.52)

o 0‘.

Equations 2.18 and 2.19 can be rewritten to solve for the mean and

>

variance of the impulse response

U;(h) - U;(z) - U{(X) . (2.53)
and
Uz(h) = Uz(y)‘- Uz(x) (2.54)
o] ‘Q

With these relatfonships and equations 2.41 and 2.50, the mean of the

impulse response function for the 1inearized Saint-Venant equations can

o

be expressed as

’ x + L X

, u'(h) = 22—~ 2 (2.55)
. ’1 o 0
or
L ' .
\J - e
Ul(h) flagchannel c (2.56)

0
and the variance of the impulse response function 1is

*D* L 2+ D¢
2¢D (x0+ ) -x.0

U(h) =02 -0% = - (2.57)
2 out in o3 o3
4 0 0

or
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L 2°D-L
3
0

Equations 2.56 and 2.58 express the lag and variance, respectively,

- gl
Uz(h) 9 -hannel - (2.58)

which are added to an input hydrograph as it passes through a prismatic
. channel specified by parameters D, ¢, and L. The channel impulse
response will vary depending on the reference flow level chosen, since D
and ¢y are functions of QO' Note, however, that the channel impulse
response is independenﬁ of xo} This means that once Q is-chosen, the
impulée response of the system 1?.325 dependent on the input signal.

' The development of a linear state space model which follows later
in this chapter uses the properties of the linearized Sainc-Venaﬁt
equations described above. The femainder of this section follows
Schaake'(1980) and focuses on several properties of equation 2.39 that
lend additional insight to routing in hydrology.

o

Additional Properties of the Inverse Gaussian PDF

Attenuation of the peak inflow, Q,, to the real section of the
channel can also be determined from an analysis of equation 2.39.

Nefine the attenuation of the peak inflow at a point distance L below

the upscréam location, x4, as

¥eh(x + L,t_(x + L))

¥eh{x ,t (x) >
(x v (x )]

A(L) =

where the numerator is thg peakaoutfiow rate at location X+ L and the

denominator is Qp+ Cancelling the common factor #ﬂproduces

h(x + L,t (x + L))
0 P 0 (2.60)

A(L) =
h(xo, tp(xo))
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Schaake (1980) notes the interesting result that although A, the inflow
hydrograph attenuation, is independent of ¥, the downstream peak outflow
rate is directly proportional to ¥, .
The channel lag of the center of mass (i.e., the mean) of the

inflow hydrograph 1s given by equation 2.56. The peak lag time can be -

derived from equation 2.39 as

t = t + L -t ) ' - .
o p(_xo_. ) p(xo) _ (2.61)
oF _ _vz _ 12
co'(x0+ L) 2 l cb-(xb) 2 l : il
o= 1 <+ - 2-
tpf. '_ = __l -1 +{ - —! (2.62)
A Linear State Space Approach
Introduction

0. o

The inverse Gaussian pdf is a linear 'approximation of the full
"nonlinear Saint-Venant equations. For small varf;tiéns in flow the
inverse Gaussian pdf pnoduées results nearly identical with the full
eqﬁations ECh;pter I1I). Unfortunately, derivation of a state space
model for equation 2.39 i3 cumbersome. A state space model with
parameters related to the parameters of the inverse daussian.pdf is
derived in this section,

The inverse Gaussian pdf is defined by equatioﬁ 2.39 in terms of
the parameters ¢;» the wave velocitv, and D, a diffusion constant

(Johnson and Kotz 1970, p. 137). This form of the inverse Gaussian pdf

follows naturally from the physically based parameters of the
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Saint-Venant equations. Equations 2.38 and 2.40 define < and D,
respectively, in terms of the reference discharge and cross éécﬁi&nai
properties. FHowever, in the ensuing analysis, the system impulse
fesponae will be determined from its moment properties which wiil be

deduced from the changing moments of the inflow and outflow, using

‘equations 2.36 and 2.58. To facilitate the determination of the inverse

- o

Gaussian pdf from its moment properties, an-al;ernativé form df equation
. 2.39 can be defined in terms of two differenﬁ parameters: u, the time '
mean ofsthquistribution, and A, an inverse measure of dispers;én ‘;
(Johnson and Kotz 1970, p. 138). Eéuacion 2.39 can be rewritten in

terms of u and A as

h(x,t) = £ (Elu,h) = vexp{ A+ (£4)2/ (2ou2e )} (2.63)

X/(Z'W't3)

The parameters of equatiéns 2.39 and 2.63 are related by
< (2.64)

(2.65)

®

The mean (Mys), variance (O%G),.and skewness (Y rg) of the iaverse

Gaussian pdf are 'simple functions of the parameters u and A (Johnson and

&

Kotz 1970, pp. 139-140).°

Wig ¥ W S ’ (2.66)

D S : (2.
%5 4 /A , .}(2 A7)

o . . . . .-

- .'/ . _. .' 2-6q
Yo =3 u/x - ( )H
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These simple relationships facilitate the determination of state space

model parameters. This {s demonstrated in the following sections.

Criteria for Matching Impulse Response Functions . -

The value of a linear system analysis of the unsteady flow
equations is that 18 allows the development of a simple model cﬁac has
an impulse response function similar to the impulse response’of‘thg full
Saint-Venant equattons. For small perturbations aboutga reference flow,
Qq * equation 2.63 defines a system impulse response which is the‘same as
the impulse responge for the full Saint-Venant .equations. In ‘Chapter :
III we will see that equation 2.63 is an excellent approximation. to.the.°
Saint-Venant equations for small (10 percent of qa) 1nf10w transients.
The linear approximatidn deteriorates for large (2000 percent of QO)
{nflow hydrographs. The results are also presented in Chapter I1I to
help show the limitations of the linear theory. The strategy employed
to determine the limitations of the linear theory is depicted in Figure
2.5, Thelpgimary thesis ;f this work is that the fundamental
nonlinearities present yhen routing large inflow hydrographs with the
Saint-Venant equations can be accounted for in a model that matches the
impulse response of the Saint-Venant equations at all reference flow

levels, Q-

Theré are a number of possible criteria which couldibe uged to
compare impulse.response functions for the simp}e.and:comole;e modelé.
In gener;l, functional relationships for the {mpulse responses tannot be
obtained, so the criteria for matching impulse response'fun¢cions must

be able to compare the responses of the systems to impﬁlse fhpd@s. ' Some

of the methods available for comparison of impulse responses are
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l. least squares regressiom,

2. maxi;um likelihood analysis,
3. spectral analysis, and

4., matching momen;s.

Direct derivation of parameters for the least squares criterion
may not be easy. For the simplest of models, a functional rglationship
may be found between the pataméters and the criterion to be minimized.
Differentiétion of that function for each parameter and solution of the
set of the simultaneous equations generated is almost always difficult
because of nonlinearities (Dooge 19%0, pp. 170-171). Statistical
packages are available to perform least squares regression and to
determine parameter values but, for any except the simplest models,
those packages can be costly to use. |

Maximum likelihood parameter {dentification suffers from the same
weaknesses} It may be diff;cult to determine the lLikelihood function
for noﬂli;ear models-and the cost ;E usinggstatistical packages to
idedtify parameters involves significant cost for éomplex models.

Spectral analysis, which involves transformations into the
freédéncy domaid, comparison oﬁ selected properties, and trahsfpfmation
back into the time domain, in principie, can be carried out to determine
parameter valués. The state sﬁéce and full systemé‘can be equaced by
matching pole.and zero 1ocations of the transfer functioms in the
transforﬁ domain. Since most hydrologic situations are notb described
functionally, the transforﬁatioﬁs to and from the spectral domain must
be carried out numerically. Numerical inversion of the transforam back

to the time domain is almost always difficult (Dooge 1973, p. 31). The

autocovariance properties of the impulse responseAfunccion previously-
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have been used to find the parameters of a state space model for a unit
hydrograph (Goldstein and Larimore 1980). This approach was not
pursued, but may prove useful for determining state space model
parameters when the impulse response is not a single-peaked fgnction.
The mean and variance of the impuise relpbnqe functions for the
linear and full systems can be compared to de:e;mine parameter values by
the method of moments. If the first n moments'of~;wo 1mpulsg responses
are identical, the two systems will produce idéﬁtical output for
polynomial input of degree n or lésp (Dosge 1970, pp. 170-171). Tﬂe
method of moments iéiuse;.fot suﬁseguen: aﬁalysis of the state space
model because it is simple and allows the convenient param@tetizatidn of

the model in terms of the moments of the impulse response function.

Computing the Parameters of a Gamma PDF

A cascade of linear sto:aée reservoirs is a well-studied routing
model (Zoch 1934, Nash 1959, Dooge 1973, p. 176). This model is
amenable to state space formulation (Szollosi-Nagy L981) and can be
functionally represented by & 3-parameter éam@a pdf (Johnson énd Kotz
1970, p. 166) ~ .- |
k-[(:—a)ok)n-l-exp{-(t—a)fk} . : : G 2;)
T(n) ’ '

G(t) =

where a = the pure deiay,
n = the number ?f reservoirs, ’
k = the time delay in each reservoir, and
() ; the gamma function (Abramowitz and Stegun 1964, p. 2535).
As formulated in equation 2.69, n can take on any positive

value. The interpretation of n as the number of reservoirs restricts it
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to positive integers, implying that [(n) could be replaced by (n-1)!
(the factorial function) in 2.69. Since it is useful to work with
continuous parameters, the positive integer restriction on n will be
relaxed :emporarily. The concept of integer values for n will be
reinstated for implementation of the state space model.

. Equations for the mean (ug), variance (oG), and skewness (Yg) of

the 3-parameter gamma pdf are’

ug = a+ h/k ‘ (2.70)
0% = n/i® . (2.71)
YG" 2/ _ (2-?2) -

(Johuson and Kotz 1970, pp. 167-168). Parameters of the inverse
Gaussian and gamma pdfs can be related by equating their means,
avatiances and skewnesses as defined by equations 2.66 through 2.68 and
2.70 through 2.72. When the gamma pdf parameters are found in terms of

the inverse Gaussian parameters, the surprisingly simple results are

2 = }3- - u - (2.73)
4 A =

negc (2.74)

= 2.X (2.75)
k) 12

As. demonstrated {n Figures 2.6 and 2.7, an inverse Gaussian pdf

" can be a;proximated well with a gamma pdf using equattons 2.73, chrough
2.75. The relationships based on matching moments begin to dereriorate
as nAapproacheé 1, because the gamma pdf becomes simply a shifted
exponentiai (Johnson and Kotz 1970, p. 166). Results for this case are

shown in Figure 2.8.
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Parameter values for & cascade of linear reservoirs model can be
computed from values of ¥ and A with equations 2.73 through 2.75.
Values of u and A can be determined from channel properties with
equations 2.64 and 2.65 if x, ¢, and D ate\knovn; or from the mean and

variance of 2 channel response function with

o= Mg (2.76)
1S 3 .
'
B G .
A = __;__ : (2.77)
¢ -

4

(Johnson and Kotz 1970, pPPe. 139-140). Equations 2.76 and 2.77 can be
substituted iato equations 2.73 through 2.75 to provide relationships
for the paraméters of the gamma pdf in terms of the mean and variance of

the system impulse response function (L.e., the inverse Gaussian pdf) as

~

1 .
a=-x Mig . . ’ : (2.78)

4 b3
nog IG ' (2.79)

2
9Tc R
u , .
N
k = - —.E—G- . L (2.80)
k) 52
IG

B

In practice the mean {uIG) and variance (G%G) would be estimated from

the moments of the primary model input and output hydrographs. To be

strictly correct {n this case, the inverse Gaussian mean and variance in

2

equations 2,78 through 2.80 should be replaced by ;%G and &IG"

respectively, where the ~ indicates & value, estimated from data.
The goal of this approach is to emulate a calibrated primary

routing model (such as the numerical solution of the Saint-Venant

equations) with a linear state space model. The general approach is to
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1, simulate with the primary model using an inverse Gaussian
pdf as the input hydrograph, -
2. compute the mean and variance of the input and output
hydrographs, ' . g .
3. estimate the mean (;IG) and variance (é%s) of the systenm
impulse responseAéith equation 2.56 and 2;58, and
4, compute a, n and k from equations 2,78 through 2.80.
When the values of a, n and k computed in step 4 above are
substituted ;gto equation 2;69, G(t) defines the impulse response of the
desired linear system. A state space model with an impulse response

>

identical to equation 2.69 is derived in the next sectionm.

A Cascade of Linear Reservoirs State Space Model

The state space model developed in this section is based
conceptually on a cascade of linear reservoirs. Figure 2.9 provides an
overview of the steps take& to develop the linear state space model.

The relatiéhship among inflow, outflow and storage for a reservoir 1is

described by the lumped continuity equation

ds

= =1-0. - 2,81,

e =10 | (2.81)
"where ’S = the reservoir storage,

<

I = the reservoir inflow, and
0 = the reservoir outflow.

A fésérvoir 1§ linear when the relationship between storage:and outflow

Q

is linear as

S = k0 (2.82)

where < = a constant.
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The state space model will operate with discrete time steps of At

when implemented, so rewriting equation 2.81 for discrete time yields

AS . -
e=1-0 (2.83)

where I = (1-9)'11 + 9012

0 = (1-p)*0 +p°0-
1 2

» Subscripts 1 anq,z indicate the beginﬁlﬁg and end of a time step,
respectively, and D.can take on values from O to 1; T;and 0 are
weighted average values of the infloﬁs and outflows, respecciveiy, at
the beginning and end of a time step.

Substituting for T and 0 in equation 2.83 gives

A
2 e (1)L #p°T = (190 =-p%0 (2.84)
t 1 2 1 2 .

Rewriting AS in terms of storage at the beginning and end of a time step

and substituting for S with equation 2.82 produce

KeQ = K*0

S 1 ; 1)l +p°1 - (1 <0 -p+0 2.85
—5_t.—— ( )1 pZ (‘Q)l sz ( )

0"

€O, +p*0 At = At (1p)*I +0p°1 | +
2 2 ((—p) 1 2) 2

| o (2.86)
’ o0 = '(1-p)e0 *At
1 1
- O ‘
or, solving for 0,
: (% - (1p)eat) :
0 = At {((1p)e1 +op°L ) + 50" -3(2-87)
0, TwFeny L 20 wesdny T ‘

o

Equation 2.87 applies for any reservoir in a cascade. The form of

equation 2.87 varies slightly for the first reservoir because the
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{nflow, I¢s 18 externally specified for the first reservoir. For all
subsequent reservoirs, the inflow is equal to the outflow from the

previous reservoir, as

Ty =%, ¢+ 27 1 (2.88)

whg:e the first subscript indicates the time step and the second
subscript indicates the relative position of the reservoir in the
cascade.

Rewriting equation 2.87 with this double subscript notatiom for
the firét reservoir yields

(x - (170)*At)

At :
Orpr1 ™ (-1 +o L) * r 0, 1 (2.89)

where I, i{s the inflow to the first reservoir at cimeAt and
E =x + peAt,
The governing equation for ‘all suBsequent reservoirs is

: At .
Orer,1 = - ()0, 4y *

Q'O"t:+1,i--1)
(2.90)
(¢ = (1)-at)

0

3 t,1i

where i > 1.

=)

Récallvthe general form of a state space model from equation 1.1

E .
Ex,t 3¢+1

_ Equations 2.89 and 2.90 must be organized into the matrix form indicated

by equation l.l. For a linear system the state transition and input

s

coefficient matrices are constant, so equation 1.l can be simplified to

3 >

§£+1 = E?Ec M E:Hc+1 (2.91)
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Defining the state vector for a cascade of n linear reservoirs as
O 1
0
- C,Z
X, . . (2.92)
0.
t,n
and the system input vector as
b}
(1-9)-It+polt4_1 |
0 o .
Uerr = ) ‘ | (2.93)
° 0

F and G can be determined by substituting equations 2.89, 2.90, 2.92 and

2.93 into equation 2.91.

Defining
¢ - (<= (1;)-&) o | | (2.94)
T =9_§. : o (2.95) -
s (1) +pr¥ o | (2.96)

the F and G matrices for a cascade of ‘n identical linear reservoirs are

el

¥ 0 0 . . 0
T'Q \y O . . .
F = 0eT2e T+Q ¥ 0 . . (2.97)

o2l . 0eT2e@  TeR ¥



and

g=r , : (2.98)

o

Parameters k (equation 2.80) and X (equation 2.94) are related by

L]

K ’4 a]./k A ’ '6, R : . (2.99)
The parameter a (equation 2.69) 1is accounted for in the state space

medel by delaying the time at which the outflow from the nth reservoir

appears by a units of time.

Summary

A linear state space model that emulates the behavior of the full
Saint-Venant equations about a reference flow level has been
developed. Parameters of the state space model are determined by
matching the mean and Qariance of the system impulse responses of the
pfimaryband surrogate podels. Verification of the cascade oé li{near
rese:voirg'state‘space.godel by comparing the result; with equation 2.39
(the impulse response of the limearized Saint-Venant equations) and a
study of the limitations ofgthe linear ;cate space model for large
inflow hydrographs, are the majo§ topics of Chapter I11. The work of
"ChapCér 1v, in which the 1mpdrtant A;nlinearities afe‘analyzed and a
nonlinear state spaée model is developed, {s.motivated by the .problems
arising when large tnflow hydrographs are routed with the iinear state

space model.
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CHAPTER III
LIMITATIONS OF THE LINEAR THEORY

Introduction

* The lineat theory developed in Chapter II for prismatic channels
is applicable sfricgly only for small perturbations around a reference
flﬁw level. Iﬁ this chapter, outflows predicted by the linearized
Sain;-venant equations and the linear st;te séa;e model are compared
with numerical solutioms of the full Saint-Venant equations for both

;;mall (10 percent of baseflow) and large (2000 percent of baseflow)v
{nflow hydrographs.

The model used as the numericil solution of the Saint-Venant
equations is the National Weather Service Dynamic Wave Operational
(DWOPER) Model (Ff;ad 1978). This dynamic wave routing model is based”
on an implicit finite difference so}utfbn of the comple{e

one-dimensional Saint-Venant equations of unsteady flow.

J(A+A )
%%*‘—5"‘:0 -a=0 (3.1)
Q a(0»2/“4- -A-(ah;s)— ev +WeB =0 (3.2)
at X g Ix £ Ve £ .-

where 0 =-discharge,
A = cross sectional area,

Ay = of f-chanriel storage area,

q = lateral {nflow or outflow,

58
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x = distance along the channel,
t = time,
g = the acceleration of gravity,
h = the water surface elevation,
ve = velocity of lateral idflow in the x-direction,
We = the»wind term,
B = channel top width, and
) (5f;'°;§? friction slope defined as
S¢ = = Jal-o | (3.3)
2.2°A°R .

in which o = the Manning roughness coefficient,

R = the hydraulic radius, and

= the absolute value function (Fread 1978).
Of f-channel storage, lateral inflowé and wind effects are ignored in
this work.

The solution technique in the DWOPER model is implicit; therefore,

the time step size can be selected based on accuracy rather than

(=]

‘numerical stability. This makes the NDWOPER model very efficient in the

use of computer time. Simulation of actual river reaches typically
requires from 10 to 30 seconds of CPU time on an IBM 360/195 computer

(Fread 1978).

Verification of the Linear Saint-Venant Equations

The impulse response function of the linearized Saint-Venant

equations was derived in Chapter II as equation 2.39.

(x—cot)z

h(x,t) = ————ii———Jexp{— DT

4ems Do £3
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where

Q
D= T.B_'.ig—'(l-oz)
. 0 0
and

cC =V
0

In this section, results obtained by simulating with the DWOPER model
and by solving equation 2,39 are presencéd for 10 percent of baseflow
transients on baseflows of 10000, 100000 and 200000 cfs. Inverse

Gaussian shape hydrographs with oy, = 3, 6, 12 and 24 hours were routed

through a rectanéular channel (widcﬁ = 100 feet)~;£€h,thg DWOPER
model. Transients for the same three baseflows; but fdr ois = 6 and 13
hours were routed tﬁrougﬁ a triangular channel withbside slopes of
l1:1. The bottom slope for both channels was 1 foot pef mile.

Comparisons between the numerical solution of the full
Saint-Venant equations and the analytical solution of equation 2.39 vere
made at 100 and 400 miles from the upstream end of‘the channels. Tpe
values of éo and D in equation 2.39 were found from the channel
properties at each baseflow level. Table 3.1l shnws‘the combinations of
baseflow, 04, and channel geometry.thac produchthe results for small
inflow transients. S

It should be emphasized that we are comparing results from the
numerical solution of a set of quasi-linear partial differential
equations with results f}om the analytical sQIuEion of the inverse
Gaussian pdf. The area under the curve defined by equatio; 2.39 will be
the samelfor all values of x. The area under a hydrograph is the VOIQme
of water in the transient. Because there are no gains or losses of
water in the prismatié¢ channels studied, the volume must be equal for

all x, This is guaranteed by equation 2.39.
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Table 3.1 Organization of Figures 3.1 through 3.18,
Comparing the Linearized and Full
Saint-Venant Equations

Rectangular Channel

gy, (hours)

3 6 12 2%

61

. Ri I T
10 | Figure 3.1 Figure 3.4 Figure 3.7 Figure 3.10

Reference ——t
Flow 100 | Figure 3.2 Figure 3.5 Figure 3.8 Figure 3.11

(1000 cfs) — , _
200 | Figure 3.3 Figure 3.6 Figure 3.9 Figure 3,12

¢

Triangular Channel

Oin (hours)

6 12
— -
10 Figure 3.13 Figure 3.16 |
Reference ———t E
i

Flow 100 Figure 3,14 Figure 3,17
(1000 cfs)

200 Figure 3.15 Figure 3.18
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Figures 3.1, 3.2 and 3.3 show results for gy * 3 hours for
baseflowl‘of 10000, 100000 and 200000 cfs, respectively. Outflows
simulated with the DWOPER model and the solution of the inverse Gaussian
pdf agree closely with respect to the tim;ng of the hydrographs for 100
and 400 miles from the channel inlet, but differ iﬁ the magnitude of the
flows. In these cases the discrepancies are caused by éroblémsowith the "~
numsrical solution of the Saint-Venant equations. For an abrupt wave,’

—such as the dy, = 3 hour inflow hydrograph, the distance and :imc step
sizes for the numerical solution must be small. For ‘the results
presented in Figureg‘3.l through 3.3, the gistanceaste? was 2.5 miles

k)

and the time step was 0.25 hour;. With so many disgénée and time steps.
over 400 miles and 100 hours, numerical roundoff caused the DWOPER model
to not maintaian continuity. Therefore the flows ptediéted by the DWOPER
nodel differ from those found with equation 2,39, However, the timing
properties of the very abrupt inflow hydrograph are excellent.

Slightly less severe inflow hydrographs, o, = 6 hours, are
depicted in Figures 3.4, 3.5 and 3.6, Results from the inverse Gaussian
pdf and the DWOPER @odel compé;e very well, especially for the higher:
flows. The numerical roundoff pfoblems of 'the bWOPER model are much
less evident for this inflow hydrograph.

For the ionger duration Lnflow with gjq = 12 hours, presented in
Figures 3.7, 3.8 and 3.9, the numerical solution of the full
Saint-Venant equations {s matched well by the inverse Gaussian pdf. For
these results, as well as those shown in Figures 3.10, 3.11 and 3. 12 Eor
o4n = 26 hours, the~analytical and numerical solutions are almost
indistinguishable. For these broader hydrpgraphs the distance and time

step sizes can be {ncreased so that the numerical roundoff is no longer

a problen.
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To demonstrate the ability of the inverse Gaussian pdf to match
the DWOPER model for a general prismatic channel shape, defined by
equation 2.23, results for dyq = 6 hours in a triangular channel are
presented in Figures 3.13, 3.14 and 3.15. The delay in the arrival of
‘the peak flow and the increased dispersion caused by the triangular
channel shape can be seen by comparing, for examplé, Figure 3Q4 with
Figure 3.13. Simply by-éhaqgihg <o and D of equation 2.39 to account
for the new channel shape, the 1nve;se€baussian pdf remainn;an excellent
approximation to the DWOPER model when the inflow transient 1s small.

Figures 3.16, 3.17 and 3.18,.for o, = 12 hours in a triangular
+ channel, can be compate& with Figures 3.7'Fhrough 3.9. Again the timing
and dispersive.pfoperties of the channel are iaentified well by the
inversé Gaussiad‘pdf.

Since the impulse response function of a linear system is a

function of the system not of the inputs, ¢, and D have the same values
for a given baseflow for all rectangular channel results. Similarly,
for the triangular chaﬁnel, o and D are functions only of baseflow, not

of 94a+ It is helpful in the analysis of, for example, Figures 3.1,
3.4, 3.7 and 3.10 (each of which is for Q = 10000 c'fvs in a rectangular
channel), to :ealize that only X,, as defined 1nvF1gure 2.4, 1is
changing. The sets of éesults for®the same baseflow level for either
the rectangular or triangular channel shape can be interpreted as an
impulse response at ever-increasing distances from x = 0, the loc#tion

of the upstream impulse. .

9

Figures 3.1 through 3.18 demonstrate that, for a wide range of
flow levels and hydrograph durations in prismatic channels defined by

equation 2,23, the impulse response fun;tion of the linearized
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Saint-Venant equations (i.e., the inverse Gaussian pdf) produces results
almost identical to those from the DWOPER model for small inflow
transients. Since results from the inverse Gaussian pdf are found by
analytically solving equation 2:39, the CPU time required is small
(1.e., less than a second). The CPU timés for the numerical solution of
the Saint-Venant equations on a PRIME 750 computer are pr#sented in
Table 3.2. The DWOPER model used from 1| to 3 orders of magnitude more
CPU time than did the impulse response function to predictithe flows -
shown in Figures 3.l through 3.18. In the next section-thg imp;léé
résponse of the linear state space model is compared with the inverse

Gaussian pdf.

Verification of the Linear State Space Model for

Small Inflow Transients

Compafison with the 3-Parameter Gamma PDF .

The three paraﬁeters of the linear state space model specified by
equations 2.91 through 2.98Qafe a; the pure delay; n, the number of_
reservoirs; arnd k; the time delay in each reservoir. The parameters of.
the 3-parameter gamma pdf (equaﬁion 2.69) can be interpreted identically
to the parémeters of the state space model; In this section, results
from the linear state spaqe;modeloand the 3-parameter gamma pdf are
-compared when the same vaiues-df a, n and k¥ are used as parameters for
both the state space model and the pdf.

Figure 3.19 depicts ché étrategy used to verify the linear statg
space model. The parameters ¢y and N of the inverse Gaussian pdf can be

determined for a specified prismatic channel with known slope and shape
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Thble 3.2 CPU Times for the Numerical Solution of the
Saint-Venant Equations on a PRIME 750 Computer
for Small Inflow Transients

Rectangulat Channel

31n (hours)

3 l 6 12 24
' T 1 !
10 {7 290.15 sec. 156.65 sgec 49.39 sec 20.90 sec
Reference —+t ' ,
Flow 100 215.23 sec  137.00 sec 40.50 sec  15.82 sec
(1000 cfs) ———+— >
200 182.50 sec 127.08 sec 39.05 sec 15.75 sec
Triangular Channel ,
9in (hours)
6 12
!
10 144,56 sec 39.16 sec -
Reference -
Flow 100 141.76 sec 30.74 sec
1N.66 sec

(1000 cfs) ——-’—
200 128.87 sec
il
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IMPULSE RESPONSE
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CHANNEL POF

'

| APPROXIMATE THE
INVERSE GAUSSIAN

POF WITH X
3-PARAMETER
GAMMA PDF
| SELECTED
| INFLCW
5 TRANSIENTS

| ‘ |
' FCRM LINEAR STATZ

NUMERICAL SOLUTION - OF=3CE MCCEL RS
OF THE SAINT-VENANT FUNCTION OF GAMMA
CQUATIONS (DOWCPER) | Cr PARAMETERS

COMPARE RESULTS

-(T; )

N1 0

Figure 3.19 Verification Process for the
Linear State Space Model
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properties. This pdf is used to approximate the impulse reéponse of the
Saint-Venant equations of unsteady flow. Because the functional form of
the inverse Gaussian pdf is not easily expressed in state space form, it
is apﬁro;imgted by a 3-parameter gamma pdf. _Parameéers of tHe two pdfs
are rela:gd by matching their means and variances.

The‘degree to which the 3-parameter gamma pdf can approximate the
inverse Gaussian pdf has been shown in Figures. 2.6 through 2.8. Now we
demonstrate that the linear state space model matches .the gamma pdf when
their parameters are equal. The state space model (like any numerical

soLution)ncanno:-properly simulate given an impulse input. The 1mpulse-

must be averagea over a computational time period, At. Although At can
be made very small, that increases the CPU time required because it
involves simulating many time steps. To avoid thls problemlwhile
demonstrating that the state space model approximates well the
3¥parameter gamma pdf, a gamma pdf was useé to generate a smooth inflow
hydrograph. Gamma p%fs can be added if the parameter k is equal for all
éhe distributions. The parameters a and n of the resultant pdf‘are.
.E;und by summing tﬁe pure delays and the number of reServoirs,
respectively, of the gamma pdfs being added. The parameters of the
gamma pdf‘genefating the inflow are defin;d as:af, ny &ndAki, If the
parameters of the linear state space model are chosen as ap, 0n and kpy»

the expected model outflow can be represented as a gamma pdf with

parameters ag, o and kg if ‘
a =a *a o 2 (3.3)
no = ni + nm : (3.4)

kK =k, =k . . (3.5) .
o i m

<
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Equations 3.3 through 3.5 were used to determine parameters for
the comparisons shown in Figures 3.20 and 3.21. The same a, n and k
values used in Figures 2.6 and 2.7, for the outflow hydrograph, a;e used
in Figures 3.20 and 3.21, respectively. Values‘for’the‘parameters ay
and nyg Eq: the inflow hydrograph were arbitrarily chosen as 0 and 2,

respectively. The only restrictions on a, ang'ni‘are

a, < a, - , s (3.6)
and ‘
n, <ng . - 3.7

The close agreement between the linear state space model and 3-pataﬁetef
gamma pdf shown in Figures 3.20 and 3.21 demonstrates that the state )
space model 1s an excellent approximation of the 3-parameter gamma pdf.
Figures 2.6 and 2.7 show how well the inverse Gaussian and
j-parameter gamma pdfs match when their parameters are related with
equations 2.73 through 2.75. These results, and the excellent |
approximation of the linear state space model for the J-parameter gamma

pdf seen in Figures 3.20 and 3.21, demonstrate that the linear state

space model can emulate the inverse’ Gaussian pdf.-

Comparison with the DWOPER Model

The next step in Figure 3.19 is‘to‘compare'resulCS f;om thé state
space and DWOPER models. Small (10 percent of baseflow) transients were
routed with the state space and DWOPER models.

The purpose here is to verify iﬁat outflow hydrographs from the
llineaf state space model compare:ggiglyi?h'a aumerical solution of the
fuliHSaint—Venan: equations when the inflow transients are small. To

compare these two models, small transients were input to the DWOPER

model. The mean and variance were computed for the inflow and outflow
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89

hydrographs of the DWOPER model. Parameters a, n and k of the
3-parameter gamma pdf (identical to the parameters of the linear state
space model) were computed from these two moments using equations 2.78
through 2.80. These three parameters, with squations 2.91 thtoqgh 2.;8,’
define the linear state space m;kel. Varying the value of p, the time
weighting factor, from O to 1 had no impact.on the results'inAthe cases
ﬁested. fhe parameter p was set to 1 for the results presented to
aséure‘stability-of the linear equations (Fread 1974, pp. 7-i0), For
‘pu;poses of this compariéon; selected channel geometry and inflow

4

combiqationsofrom the previous section were tspeated. Table 3.lvshows
pairs of figures with identical inflow and channel ptoperti;s.

Now, re£mpose the integer restriction on parameter n. In the
state space model, n represents the number of reservoirs in.the'cascade
and must, therefore, be é‘p§sitive?§ho1e number. From equations 2.70

and 2.71, the mean and variance of the 3-parameter gamma pdf (and also

of the impulse respoﬁse function of the state space model) are

. : > . N
g =a+n/k
and
‘ g2 = n/k?

The exact values of a, n and k used in the state space model are
presented in Tablg 3.4, Thesé values were computed from the moments of
the inflow and outflow hydrographs df the DWOPER model using equations
2.78‘througﬁ 2.80. Howevgr, n must be an integer. The values of n

1isted in Table 3.4 were rounded to the nearest integer for use in the

Q <

state space model.
The slight effect of this parameter change can be seen by

cBmparing Figure 3.22 with Figure 3.4, The ideal value of n is 3.702,
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Table 3.3 Pairs of Figures with Identical Input Data
Comparing the Linearized Saint-Venant Equations
and the Linear State Space Model with the Full

" Saint-Venant Equations

Figure Comparing Figure Comparing Linear
g

Linearized and Full . State Space Model and Full
Saint-Venant Equations Saint-Venant Equations

304 $ecssrsssssersssngescssie 3'22

3.2 l.O.'.i'.;“....!'l.t..... 3.23
308 L A A N N N N N R N N NN NN R 302&
3012 e 000 P Rss BRI ORLERIOEECERNTSYS 3.25

3014 S eevess sttt 3026

3018 S0 00 s ssCERLEORROLISIOSIOOLIEOESLEOESTOSCODN 3027



Table 3.4 Values of Parameters a, n and k
for the State Space Model

<

Ractangular Channel, L = 100 miles

]

a n

10000 cfs 5.692 3.702

= 100000 cfs 2.260 . -0.943
= 200000 cfs 1.711 0.625

Rectangular Channel, L = 400 miles

—a n
= 10000 cfs 22.767 14.810
= 100000 cfs 9.039 3.772
= 200000 cfs 6.844 2.502

Triangular Channel, L = 100 miles

—2 o
= 10000 cfs 6.830 2.686
= 100000 cfs 3.841 - - . 1.133
= 200000 cfs 3.230 0.874

Triangular Channel, L = 400 miles -

a n
= 10000 cfs 27.318 10.744
= 100000 cfs 15.363 T 4,534
= 200000 cfs 12.919 3.497

£y

k

0.3252
0.2087
0.1828

k

0.3253

0.2087
0.1828

k

0.1967

91

0:1476

D.1354

o

k

0.1966

0.1476
0.1354
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but this must be rounded to 4. Equations 2.70 and 2.71 indicate that
this change should increase the lag and the dispersion introduced by the
state space model. This is exacﬁly what occurs. Whereas in Figure 3.4,
the timing of the peaklfor the impulse response was identical-with the
DWOPER model and thé peak flow slightly high at 100 miles, the peak flow
from the state space model is later and lower in Figure 3.22. '

The rounding of parametar n can sometimes seem beneficial, as
Figure 3.23 shows. The 1deal value of n is rounded from 0.943 to 1.
This will increase the lag and the variance of the state space model
outflow‘hydrbgraph. By slightly delayiné the rising and the falling
1imbs of the hydrograph, the state space model flow agrees better
visually with the DWOPER model than did the inverse Gaussi;n pdf in
Figure 3.2. h

A more expected result can be seen by comparing Figures 3.24 and
3.8. In this case, the increased variance has caused the peak flow to
decrease because the volume of water in the hydrograph is fixed, and the
falling limb of the hydrograph for the state space model has been
delayed.

For a baseflow of.200000 cfs in a rectanguiar channel, n would
ideally be equal to 0.625. The change in the outflow hydrograph from
the impulse response function of Figure 3.12 to the state space model
outflow ;hown in Figure 3.25 is caused by the substantial cérrection of
parameter n to an integer value. Since the maximum time shown on Figure
3.25 is larger than for the other figures, horizontal differences
between curves are cotrespoﬁdingly larger.

A case of n being rounded down to the next lower integer can be

seen in Figure 3.26 for a triangular channel. In this case the lag and
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variance of the state space model decrease because n i3 less than the
ideal. Comparison of Figure 3.26 with Figure 3.13 demonstrates that the
state space model outflow is distinctly earlier and less dispersed than
results from the impulse response function. This cguses~the peak flow
for the s;at; space model in Figure 3.26 to be higher than for the
DWOPER model.

State épace'model results for a baseflow of 200000 cfs in a
ttiangdiaf channel are presented in Figure 3.27. The effects of
increasing n from 6.874 to 1 can clearly be seen by comparing the
outflow hydrograph with Figure 3.18., The peak flow of the state space

model in Figure 3.27 is lower because the outfléw hydrograph is more )
dispersed. The increased lag can be gseen in the hydrograph's falling
limb,

Results from the linear étate space model compare very well with
those f;om‘the DWOPER model. Small differences in results can be
attributed to the interger restriction on parameter n. Differences in
CPU times‘required to simulate with the fwo models are large. The CPU
times on a éRlME 750 co@pu;er for the six figures discussed above are
presented in Table 3.5. The DWOPER model typicélly took from 2 to 3

orders of magnitude more CPU time than the linear state space model.

The Importance of Nonlinearities

" - The previous results show that the linear theory developed in
Chépter II works very well when the phenqmena being modelled are
iinear. However, in many (if not most) of the surface runoff or channel
‘routing ‘problems encounéered, the input fldctua;ions are large, and

nonlinear behavior is observed. In this section the linear state space
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Table 3.5 CPU Times for the Linear State Space and
DWOPER Models on a PRIME 750 Computer for
Results of Figures 3.22 through 3.27 &
‘Linear State .
Oin length Channel Q, Space Model DWOPER Model
- Figure (hours) (miles) Shape (cfs) CPU Time  CPU Time
3.22 6 100 Rect. 10000 0.21 sec. 161.57 sec
3.23 3 100 Rect. 100000  0.19 sec ~  78.88 sec
3.24 12 100 Rect. 100000 0.09 sec 45.63 sec
3.25 24 100 Rect. 200000 0.08 sec 10.21 sec
3.26 6 100 Tri. 100000 N.13 sec 47.32 sec

3,27

12 100 Tri. 200000 0.07 sec 10.99 sec
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model is compared with the DWOPER model for large (2000 percent of
baseflow) inflow transients. Since the linear model is only strictly
applicable for a small flow range around the reference discharge, we
expect the results of this section to deterioriate iignificahtly from
those prgsented abdvé. If this were not the case, Chapter.IV would,be °
titled "Conclusions™ instead of "A Nonlinear ScateOSpace Madel.” -
The cases presencgd are. for Lnflowlhydrographs of 200000 cfs on' a
baseflow of 10000 cfs. Results from the liﬁeat state spéce and DWOPER
models are compared at 100 and 400 miles from the channel inlet. The 16

cases presented are summarized in Table 3.6. *

As shown in Figures 3.28 and 3.29, a linear mod%} ié not adequate
to simulate the physical processes that ocCur'when a iatge, very abrupt
hydrograph (9y, = 3 hours) is input. Siﬁce results from the linear
state space model are sensitive to the reference flow level at which the
parameters a, n and k aré selected, Q, ¥was chosen as 100060 cfs for 511.
iargé tfansient figures unless otherwise stated: This ;alue w;s chosén
at slightly less than the average of the base and peak flow levels, to
assure that values éor the paraméters of the state space model are as
often too high as too low. The results of Figure 3.28 indicate that, ,
even at 100 miles from the channel tnleg, the state space model does not
disperse the inflow transient as much as the DWOPER model. At 400
miles, shown in Figure 3.29, outflow from the state space model is
clearly late and not as dispersed as from the DWOPER model.

Figure 3.30 shows that the timing and disperi}éd;bfoye;ties of the
state space model for g4 = 6 hours at L = 100 mile;kareiﬁégy close’ to

those of the DWOPER model; however, the rising and falling limbs of the

state space model outflow hydrograph have the wrong slopes. This is a



%4n

9in’

Oin

in

9in

9in

Table 3.6 Organization of Figures 3,28 through 3.43,

= D3 hours
= 6 hours

= 12 hours
= 24 hours

= 6 houfs

= 12 hours

Comparing the Linear State Space Model
with the Full Saint-Venant Equations
for Large Inflow Transients

Rectangular Channel

L = 100 miles L = 400

Figure 3.28 Figure
. Figure 3.30 ‘ Figure
Figure 3,32 Figure
Figure 3.34 ’ , Figure

Triangular Channel

L = 100 miles L = 400
Figure 3.36 Figure
Figure 3.38 Figure

Double-Peaked Hvdrograph

L = 100 miles L = 400
= 100000 cfs Figure 3.40 Figure
= 10000 cfs -- : Figure

200000 cfs - . Figure

miles

3.29
3.31

3.33
3.35

miles

3.37
3.39

miles.

3.41
3.42
3.43
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typical problem with linear models trying to simulate nonlinear
behavior. The linear results are closér to a Gaussian pdf than to the
truély nonlinear shape of the DWOPER model outflow hydrograph. This
will be a recurring problem for the linear state space model results
presentedlin the remainder of this chapter. |

’Fesults for 0, = 6 hours at L = 400 miles, shown in Figure 3.31,
demonstrate that it was merely good fortune, not a properly formulated
model, that let the linear state space model match the DWOPER nodei
outflow in Figure 3.30. - At 400 miles, the timing and dispersive |
properties of the state space model are clearly different than the
nonlinear results from the DWOPER model.

Qith the broader inflow hydrograph (Fin" 12 hours) shown in
Figure 3.32, the behavior of the state space model impréves(greatly.
Since the flow varies more gradually over tiﬁe, the nonlinear terms of

' ]
the Saint-Venant equations are. relatively less important than for the
more rapidly varying inflows\shown earlier. The major discrepancies
between the state space and DWOPER models are the slight increase in lag
and dispersion of the inflow hydrograph shown by _the state space model
which is caused by rounding parameter nup to 1, and the symmetrical
shape of the stat; space modél's outflow hydrograﬁh, which is typical of
linear models. .

The Gaussiaﬁ'shape of tﬁe staté space model outflow is even more
evident in Figure 3.33, for oy, = 12 hours and L = 400 miles. For this
slowly varying inflow, thevdelay'and dispersion introduced by the state
space model are approximately equal to those seen in the DWOPER model
fesults; but the linear model is not ablé to reproduce the slopes of the
steeply rising and slowly falling outflow hydrograph limbs which are

charactericetic of nonlinear routing models.



107

A

SO[TUI O0¥ = T PUE SINOY 9 = . Ulp J0} peuuRey) Jerniuejoey
® Uy suopjenby ueUe)-jures [MJ oY} PUe [BPOR ooeds

93¥1S TeOUTT O} WiIM POINOY JUSISTRL, MOLFU] OBI¥T V' TE'E SmBLg

(SUNOH). MIL

00°T = X ‘001°0 = W
8.7.....87.._
602°0 - % ‘4.'c =" ‘306 - P
mﬁg _,

00N W0Md

-S4t

- 002

- ST

- (S840 000T) SMOT4LNO 71300W ONY MOTANI



8

(SYNOH)

00z Y1 o5t 1 001
.

o | . -

= sorrux goT = T pue oy T = Wo J0) pPuwey)
8 U} suonjenbyg jusus) —jures [MJ oY) pue [OpPON egedg "
9191S TeOUTT oY} WM POINOY JUSTSURLL Mmo[Ju] 3dre] ¥ 2e'c By

ML

1R

00°T - X ‘000°T - W
00°1 -w “"001 - 0.
glc - .Vm vato - .P— \ﬁoN - .O
SYIL Y

(840 000T) SMOT4LNO 13A0W ONY MOTINI



09

= so[rwI 0p¥ = T pue oy 2y = o 10§ puuey) semiuejosy
e uj suorjenby jueusj—jures [N oY) pue [9pojy aoedg
9)e)s JEIUTT 9Y} YIIM PaINOY JuUdIsUeL], MO[Ju] adae] V gg'g aIndig

(S¥NOH) FWIL

002 SL1 0st szt 001 S/ 0s 6z 0
L j | . | 1 1 ] 1 1 Q
::::::::: - QT
- 05
s 7A
. - 00T
00°1 ~ ¥ “000°1 = W s,
00! - @ ‘001 - i) .
602°0 = ™ “‘£L°E - % ‘30°6 - "0 - 051
SYILINNYL
.. N ; - SL1
__1300W_30HdS_31UIS F |
"T300W_ 4340MQ | ooz
HJONH0NGIH MOTIINT
ON3931

(S40 -0007) SMOT4IN0 1300W ONY MOTJNI



110

As the dispersion of the inflow hydrograph increases, these
effects become even more pronounced. In Figures 3.34 and 3.35, for
L = 100 and 400 miles, respectively, the basic timing and attenuation
properties of the state space and DWOPEg models -are in close agreement,
Eu:'th§ symﬁetrical shape, typcial 6£Ache linear modei. limits 1its
ability ﬁo match the nonlinear outflow hydrograph.

For a triangular channel, as shown in ?igﬁte 3.35. the major cause
of differences between.the state space #nd DWOPER models is the foundiﬁg
of parameter n down to l. As we willgseq in Chqpter ;V,,ghg cérrect
value for m, theé kinematic wave barameter,'is 4/3 for ; Eriangulat‘ .
channel. This is close tom = |, the value implied by a linear:model..
Since m should be equal to 5/3 for a rectangular channel,’we would
expect a linear model to be better for a triangular channel than for a
rectangular one. This is indeed the case, as can be seen by comparing
Figure 3.37, for gy = 6 hours and L = 400 miles in a triangular
channel, with the corresponding Figure 3.31 in a rectangular channel.

The shape of the state space model outflow in Figure 3.37 is
closer to the DWOPER model than in Figure 3.31. This is not because the
state space model is any less linear in Figure 3.37, hut because flow in
a triangular channel, with m = A/j, is more linear than in a rectangular
channel, where m = 5/3. This effec; is even more evident in Figures
3.38 and 3.39 for an inflow hydrograph withao, = |2 hours’gt L = 100
and 400 ﬁiles; respectively. The state space model outflow hydrograph
shapes, especially the falling iimbs, are much closer fo the nonlinear
behavior simulated with the DWOPER model than in the corresponding

°

Figures 3.32 and 3.33, for a rectangular channel.
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The next test comparing the linear state space and DWOPER models
was for a double-peaked inflow hydrograph..  The inflow hydrograph
consisted of a 100000 cfs transient followed by a 200000 cfs transient
on a baseflow of 10000 cfs. At 100 miles from the fnlet of a
rectangular channel, the linear state space model still approximates the
DWOPER model results well. However, as Shown in Figure 3.40,‘ﬁhe rising
?ndlfalling linbs of the linear model's hydrograph are already different
Jin slope than the DWOPER model. In Figure 3,41 we can see that, Py 400
miles from the channel inlet, the state space model outflow has departed
significantly from the DWOPER model. The outflow hydrograpp from the
linear modgl is becoming more symmetrical, while the rising limb of the
DWOPER modei outflow is stegpening and the falling limb is becoming
flatter.

The impact of the reference flow level on the linegr state space
model results is shown in Figures 3.42 and 3.43. The parameters a, n
and k were selected at a reference flow of 10000 cfs in Figure 3.42.

The resultant outflow hydrograph is very late and much more dispersed
than the flows shown in Figure 3.41. When parameters are chosen at

Qy = 200000 cfs, as in Figure 3.43, the state space model lags and
disperses the inflow hydrograph significantly less than when 00 = 100000

cfs. The reference flow level has a striking effect on the linear state

space model behavior.

Summary

Results presented in this chapter have demonstrated
1. the behavior of the impulse response function for the

linearized Saint-Venant equations (equation 2,39) is almost
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identical with a numerical solution of the full Saint-Venant
equations for small (10 percent of baseflow) inflow
transients,
2. the linear staté space model developed in Chagter IT i3 an
. excellent surrogate for a model based on the full
Saint-Venant equations when small i{inflow transients are
routed, and
3. ‘tmportant nonlinearities that are not adequately modélled by B
b the linear theory developed in Chapter II when large (2000
percent of baseflow) inflow hydrographs are routed with the
full Saint-Venant equations. ®
In Chapter IV nonlinearities important when rouciﬁg large inflow
hydrographs are analyzed. A nonlinear state spaée model emulate the
behavior of the full Saint-Venant equations over large flow ranges is

developed. The ability of this nonlinear state space model to act as a

surrogate for the DWOPER model is the topic of Chapter V.






,f!:

CHAPTER IV >,
A NONLINEAR STATE SPACE ROUTING MODEL

Analysis of the Important Nonlinearities

Chapte?’III‘ptesented limitations of the linear theory. The
inability of the linear theory (specifically the impulse response
functionlof the linearized Saint-Venant equatLpns) to emulate the
behavior of the full nonlinear Saint-Venant equations leads us to the »
current chapter. In this chapter we will

l. analyze the nonlinear.characteristics of the primary model,

2. explore the properties of a nonlinear storage reservoir, and

3. develop a fully nonlinear state space routing model which
emulates the mathematical behavior of the Saint-Venant
equations for any inflow transient. |

The approach to the analysis of the nonlinearities inherent in the -
Saint-Venant equations is outlined in Figure 4.l!. The }ollowing section
beginsg with the full Saint-Venant equations.and, in the spirit of the
new perspéctive of routing presented in Figure 1.1, predicts the
theoretical variation of.the-ihpulse response properties with a linear
analysis. The expectations of linear theory are theh confirmed by

s

numerically solving the fully noﬁkingar\Saint-Venant equations and

observing the changes in the impﬁlse résponse function. Results fronm
this analysis lend insight into a state space model structure which will

emulate the nonlinear behavior of the primary model.

123
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FULL. NONLINEAR
SAINT-VENANT EQUATIONS

£

PREDICT HOW MOMENTS | .

OF IMPULSE RESPONSE NUMERICAL

FUNCTION VARY WITH SOLUTION
FLOW LEVEL - .| (DWOPER)

s

OBSERVE HOW
MOMENTS OF ©
IMPULSE RESPONSE
FUNCTION VARY
WITH FLOW LEVEL

MOMENTS OF IMPULSE
RESPONSE VARY AS

ALGEBRAIC POWER .
OF FLOW LEVEL

!

» 1
'} CONSTRUCT NONLINEAR COMPARE RESPONSE
STATE SPACE MODEL OF NONLINEARR
USING CASCADE OF —==— STATE SPACE MODEL
NONLINEAR RESERVOIRS WITH RESULTS FROM
AND VARIABLE LAG PRIMARY MODEL

Figure 4.1 Approach to the Nonlinear Analysis
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Nonlinear Characteristics of the Primary Model

Introduction

This section analyzes the nonlinear characteristics of the
Saint-Venant equations, the exemplar primary model. The approach for
that analysis is shown in Figure 4.2.

* The variations with ﬁlov of the linearized Saint-Venant equations'
impulse'response'functibd are dérived and the Qean and variance
properties of the impulse response function are analyzed. These moments
will be needed to specify the. parameters of the nonlinear state space
modei developed later. 5

fhe variations with flow-of the impulse response for the full
Saint-Venant-equations are determined by simulating with incremental
transients as inflow, and observing the outflow. The fesults predicted
by the linear analysis of the Saint-Venant equations agree with those

obtained by simulating with the DWOPER model.

Theoretical Variations with Flow level of the Impulse Response

Function for the Linearized Saint-Venant Equations for Incremental

Inflow Transients

Beginning with the Saint-Venant equations of unsteady flow
(equations 2.20 and 2.21), the iépulse response function for the

linearized Saint-Venant equations was obtained in Chapter II as

equation 2.39 - R
N ’ (x=c t)?
= i -0
h(x,t) = ———— s exp{ Tt

/Aoﬂo De t3
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This equetion has the form of an inverse Gaussian pdf (Johnson and Kotz

1970, p. 137). The mean, ty, and variance, 02, of the inverse Gaussian

pdf were presented in equations 2.41 and 2.42 as

and
Qe x

(102}
B -so-c3

02 =

The deriv&cion of the changes with flow level, Q, in the mean and
variance of the linearized Saint-Venant equations' impulse response
function begins by substituting for ¢ in equation 2.41 with equation

b

2.38 to give

X .
tz aE‘_\T . (4-1)

From equation 2,22

SO

» ’ . (4.2)

A
9]

T
u
g =

Equation 2.30 expresses the friction slope as

Since this analysis is for small transients about a reference flow

. leVel,ywe'make the standard kinematic aSSumption‘of steady uniform flow
S, =5 o (4.3)

(Henderson 1966, pp. 287,367). .Substituting equation 4.3 into equation

2.30 and rearrangiug gives
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By replacing B with equation 2.23 we get
3 .
02 - X, (4).(142) (4.10)
B +A"es om® OF
0 - 0
And, finally, substituting for A with equation 5.&'and féarranging
yields
3-r El A )
x 2y Lh@,eq"” | -
o? = (142)e () * =2 (4.11)
B+S m . Qg - .
0 0 '
By simplifying the expression for Q we obtain
3-r-2m -
m
02 = 80 (4.12)
where
L
B =_____’i__,(1_¢2).ar"3
2 B +S +m
0 o0
The standard deviation of the impulse response is
3-r-2m ’
.y~ - ; 2m
o =72 M;Q (4.13)
or
3-r-2m ,
a~q " : (4.14)

Again, the moment of the impulse response varies as a simple algebraic

power of Q and the éxponent depends on m. For the variance, however,

>

the power i{s also a function of the channel shape parameter, r. For a
given friction resistance formuia (L{.e., Manning or Chezy), o and r are

related by equation 2.28,

a

The coefficient of variation of the liqearized'Saint—Venant

El

equations' impulse response can be found from equation 2.43
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LW1/a 1/a
A=(3""0 (4.4)
Replacing A in equation 4.2 with equation 4.4 produces
4 l}m : ' '
x (1 1/m N .
£y = (3 -% (4.5)
or
' l-m ,
m : « e
ty = B1 Q , ; (4.6)
. AL .
where
x 1\ 1/m o »
31 - ;‘(;) .
Recognizing that 51 is constant for a reference flow
1-m
w
t, ~ Q . (4.7)
where ~ symbolizes "is proportional to.”
Equation 4.7 states that the first moment of the impulse response
function varies as a simple algebraic power of the flow level., The
value of the exponent depends upon the kinematic wave parameter, m.
The variation of the second momenf can be found by again
substituting for ¢ with equation 2.38, This time substitution into
equation 2.42 gives
02 - Xx L(1-2) (4.8)
. BeS emiev?
0
where QO’ Bo and Sy are now replaced by Q, ﬁ and ¢ because we are
solving for the variation of 02 with flow.
Substituting for v with equation 2.22 produces - .
2 O x A3 2

BeS *md @}
o' Q






130

Substituting equations 4.6 and 4.13 into equation 2.43 gives

N

3-r-2m

/B é‘??"' w
Cy "'51‘1 T (4.15)
: m

Q

or simplifying

l-r
2m
c, = 63 Q _ : 4 (4.16)

where

c.~0 _ (4.17)

Equations 4.7, 4.14 and 4.17 express the theoretical variations with
flow level of the tmean, §tandard deviation and coefficient of variation
of the impulsé response function of the Saint-éenant equations. In the
following section some numerical results are presented for comparison
with the variations predicted by linear theory.

o

SimulatedGVafiations with Flow level of the Impulse Response Function

for the Full Saint-Venant Equations for Incremental Inflow Transients

In general, the operational procedure for determining the moments

of the chagne1°response will be to simulate small transients with the

primary model at various baseflow levels and observe the results. In
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the current application, however, with the Saint-Venant equations as the
primary model for a prismatic chamnel, we have the opportunity to
compare the expected theoretical results obtained from equations 4.7,
4,14 and 4.17, with numerical computation of the moments. from the fdlly
nonlinear S;int—Venant equations model.

The NWS DWOPER model (Fread;l978) was used.to numerically solve
" the fpll eqhati&ns of unsteady flow. The moménts of the impulse
response function of the Saint-Venant eqnaﬁions were found by &Eiving
the DWOPER model with small-(lo percent of baseflow) inflow transients
for several baseflow levels, and ob;e;ving the outflows. The means and
variances of the inflow, x, and'outflow,‘y, hydfographs were ﬁhen
computed. The moments of the impulse responsé fuﬁétion, h, were foun&

with equations 2.53 and 2.54
o

U{(h) = U;(Y) - U;(X)
and

U (h) =U (y) - U (x)
2 2 2

The coefficient of variation of the impulse response is

/UZZhS >

7
i
From equations 4.7, 4.14 and 4.17, ;e see that the theoretical
variations with flow of the impulse reéponse moments depend on m énd
;l Th; theoretical values of m can be derived for any pfismatic channel
‘ ;sing gh; Manniﬁguff£;tion formula. Once m is known, the value of r ¢an
be found from equation 2.28. For th; two channel shapes studied in this

work, the values of m and r are:
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shape 2 I
rectangular 5/3 0
triangular 4/3 1/2

Figures 4.3 and 4.4 depict the lag time introduced by the
rectahgular and triangular channels, respectively. The geometry of the

channels is described in Chapter III. The lags presented are for

distances of 25, 50, 100, 200 and 400 miles from the channel inlet (xq

"i{n the notation of Chapter III). Incremental transients on baseflows of

10000, 100000 and 200000 cfs were routed with the DWOPER model. The
results presented are for inflow transients with O4q = 12 hours.
Results for gy ™ 3, 6 gnd 24 hours look identical to those presented.
This must be, because the impulse respongse for a linear systema is not
dependent on the properties of the input, but is strictly a function of
the system. The theoretically predicted and numerically simulated
values match almpst'exactly. The slope of the lines on Figures 4.3. and

2

4.4 can be found by fearranging equation 4.7 as

slope (4.19)

lag  T=a
For the rectangular channel presented in Figure 4.3, with m = 5/3, the
51°Pelag = -2,5, On Figure 4.4, the triangular chanﬂel with m = 4/3,
the slépelag = -4, Observed lag time versus flow data which corroborate
the theoretical expectations of equation 4.19 are presented in Chapter
ViI. ]

Figures 4.5 and 4.6 present the theoreticaliand ;imulated standard
deviations of the impulse response func;io&rvefs§$ flow level. Again,
thé results compare very well. The slopes’of‘thé iines on Figures 4.5

and 4.6 can be found by substituting (m = 5/3, £ =0) and (m = 4/3,

r = 1/2), respectively, into
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2m

o (4.20)

slopoo -

Similarly, Figures 4.7 and 4.8 depict the theoretical and simulated
coefficients of variation of the impulse response function. The slopes

of these lines can be found as

2m e
s?_-opecv = Ty ‘:;Q- » (4.21)

Before’leaving the topic of the simulated variance with flow level of
the impulse response function, a valuable relationship can be found by

solving equation 4.19 for m as

=)
»

(4.22)

-

§1opelag

" T 1 + slope

lag

This expression, defining the kinematic wave parameter,Am, in terms of
the channel lag versus EIOW'prdﬁercies, will be useful for determining
one of the parameters of the nonlinear state space model which is

developed in a.subsequent section of this chapter.

5 . Properties of the Nonlinear Storage Reservoir

as a Building Block for the State Space Model

Just as the linear reservoir relationship, equation 2.82, is the
cornerstone of the linear state space model, the nonlinear reservoir

.« equation is the foundation in the development of the nonlinear state

o

- spdce routing model. The relationship between storage and outflow for.a

S

noalinear reservoir is

Sm =0 (4.23)
where S = the reservoir storage, a

©
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0 = the reservoir outflow, and
m and X are constants.

If m in equation 4.23 is taken to be the kinematic wave parameter,

"the nonlinear storage reservoir has the same lag versus flow properties

as the linearized Saint-Venant equations. Eﬁuation 4,23 can be
rewritten as

s = x'/®ol/m (4.24)
For a reservolr of length L and cross sectional area A

S = LeA (4.25)

Combining equations 4.24 and 4.25 gives

A=

éf(l/m.ol/m (6.26)

The time lag through a reservolr is

’ L
t, =% _ | (4.27)

where v is the average velocity through the resérvoir.

But from equation 2.22

<
u
»lo

Substituting equation 2.22 into equation 4.27 produces

2

. A . ) ‘ :

And substituting equation 4,26 into equation 4.28 yields

1/m
¢ =TI:_»<1/‘”-9_O_ | (4.29)
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or
e, =mxl/mgm ' (4.30)

which 1s identical in form to equation 4.6 for the time lag of the
linearized Saint-Venant equations. »
The thesis presented in this work is that a state space model in

3

the form of a cascade of nonlinear storage reservoirs can emulate the

E]

Y

EEEY
-nonlinear behavior of the Saint-Venant equations. A fully nonlinear
staée space model that maintains the lag versus flow relationship of

equations 4.6 and 4.30 is developed in the next section.

Development of the Nonlinear Model

Introduction

A fuily nonlinear state space routing model which emulates the
Saint-Venant equations E;r downstream waves in prismatic channels is
gevelopgd fn this secfion; This nonlinear state space model is based
upon ; : R ,

l. the linear state space mﬁdel developed in Chapter II, which
has the same impulse response function as the }1nearized
Saint-Venant equations for a prismatic channel (i.e., the
inverse Gaussian pdf); and

2. the functional relartionships for the variationé with flow of
the mean.and variance ofbthe inverse Gaﬁssian pdf which were

derived earlier in this chapter.
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Figure 4.9 shows the approach taken in developing the nonlinear
state space model. The general structure of the nonlinear state space
model is a cascade of nonlinear reservoirs as shown in Figure 4,10, The
nonlinear properties are gmplemented by varying, with flow level, the
parameters (a, n and k) of the linear state space model developed in
C;ape;r II. Instead of a model specified by three parameters, as in
Chapter II, the nonlinear state space model is specified by three
functions. The values of a, n and k vary with the level of flow.
Although each of the.n reservoirs in the cascade isd goverﬁed by
identical functions of a versus flow and k versus flow, in ‘general the
values of ai';nd ky will be different'for each ith regervoir because,
except under steady flow conditions, the flow through each reservoir
will be different., From three functional relationships, 2n+! parameters
are determined which specify the.fx,t and Gy ¢ matrices in equation 1.l
at each time step. The>algofiﬁhm to perform this task efficiently is
presented-laﬁer in this chapter, but first the functions of a, n and k
versus flow are derived. .

Equacions A.7°and 414 express the variations with flow of the lag
and standard deviation of the impulse response ﬁuncfion for the
~ linearized Saint-Venant equations. We wanf the variations with flow of
the lag and variagce properties of the sgate space model to match the
variations of the fully nonlinear Saint-Venant equations.

The parameters of the state space model are related to the mean

. and variance of the impulse response function by equations 2.78 through

2.80



143

ASSUME STRUCTURE OF STATE SPACE MODEL
EQUIVALENT TO A CASCADE.OF NONL INEAR
RESERVOIRS PLUS A PURE DELAY THAT
VARIES WITH FLOW LEVEL

DERIVE ANALYTICAL EXPRESSIONS FOR
MOMENTS OF THE IMPULSE RESPONSE
FUNCTION OF THE STATE SPACE MODEL
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EXPRESS PARAMETERS OF 3-PARAMETER
GAMMA PDF AS A FUNCTION OF MOMENTS
- AND ‘FLOW LEVEL

!

EXPRESS STATE TRANSITION AND INPUT
COEFFICIENT MATRICES AS FUNCTIONS
- OF FLOW LEVEL ;

Figure 4.9 Approach to the Development of the
Nonlinear State Space Model
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Substituting equation 4.7 into equation 2,78 with tz

variation of the state space parameter a with flow as

.‘uIG gives the

l-m
a~Q ® (4.31)

»
3

The variation of n with flow is found by substituting equations 4.7 and

4.14 into equation 2.79 with t, = u__and g = 9c to give

PR 0
2-2m
q " .
n~ =T _ (4.32)
Q m
or
=1 e
a~ao" . (4.33)

Similarly, the variation of k with flow can be obtained from equations

4,7, 4.14 and 2.80 as

Qk‘,v Q ' ) ] (!‘.36)

k~0 @ ‘ . . (4.35)
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Equations 4.31, 4.33 and 4.35 describe the variations with flow of
parameters a, n and k, respectively, of the state space model.

Operationally, the value of m for the channel can be found by
simulation. Using the primary model, the lags for several baseflows
with small input transients can be found. The slope'of the line
obtained when lag is plotted as a func:}on of baseflow on logarithmic¢
axes determines m with equation 4.22.

The lag and variance produced by the channel must be found for any
one fioé'level by simulating with the primary model. With this as a
" reference point in lag-Q space, m ;omputed as above, and the funétions
4.31, 4.33 and 4.35 fér the model parameters, all the information needed
to construct the nonlinear state space model is at hand. The steps
required to develop the nonlinear state space model are summ?rized in
Figure 4.11.

TQo points of a general nature should be stressed at this time

o -

"1, The state space modeg developed here is fully nonlinear.
Its theoretical basis draws heavily from linear system
analysis, but only to explainvbetter the nature of the

important nonlinearities; and )

2., There is not a feferepce discharge for this model. The
functions descriﬁed by equations 4.31, 4.33 and 4.35 are
valid for all flows where m is constant. A point in lag-Q

space to fix these functions could be found at any flow

level. . _ o

" The following sections describe the final sucessful nonlinear
state space model and the path taken to find the final model. The first

1s needed to confirm the perspective of this work. The second is
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Figure 4.11 Development of the Nonlinear
State Space Model -
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included becsuse it may lend insight into the alternativee available
even aftoi the theory is developed. Obviously, both the theoretician

and the model builder are vital if a useful product is to be developed.

) ~

The Final Configuration of the Nonlinear Model

o

The final form of the nonlinedr state space routing model is based
conceptually on a cascade of nonlinear reservoirs. As with the linear

state space nod?l developed in Chapter II, equation 2.81 describes the

o

relationships among inflow, outflow and.storag# for a reservoir

a=t-°

o

where

S = the reservoir storage,
I = the reservoir inflow, and

0 = the reservoir outflow.

4

Now, however, the relationship between storage and outflow is nonlinear,
as expressed in equation 4.23., The nonlinearites implicit in equation

4,23 are modelled by letting k vary with flow for the ith regervoir as

- . : ' L (s,
S5, " e, 1%, | o (4.36)

©

where the subscript t,1 indicates the.value of x for the flow level

o« oo ° .
“oxWeough the 1th reservoir during the tth time step. Equation
2.99 defines parameter < as the inverse of parameter k. The

variation of k with flow is defined by equation 4.35.

Equation 2.84 1is still valid for nonlinear reservoirs
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A8
- . . - (1=p)*0 = p+0
Eg (Lv)11+p 5 ( L TP )

Rewriting AS in terms of storage at the beginning and end of a time step

for the ith reservoir yields

S -8
e+l eyt . . :
At (1) ot,i—l *e °t+1,i—1
: (4.37)
(1-9)-0':’i - °'°:+1,1
. S 9 )
Substituting for S. 4 with equation .4.36 produces
' . ]
“eel,1 %11~ Se,1"% 1 . .
At
‘ (4.38)
0 + p*0 - . - e
(12200, 4y ¥ P 0y, gy ~ P00, 4 = P00y
Solving for Ot+1,1
- « A
5 _ (1-p)*At 0 . (Kt,i (1=p) t) .o N
e+l T . t,1-1 - £,
((t+1,i + peAt) ((t+1,i + peAt)
(4.39)
peAt L0
’ (<pr,qg *o0oe)

~

The value t+l,1 in equation 4.39 depends upsn Ot+1,1- To avoid the

need for an iterative solution let

oo (4.40)

°

“eel,1 7 Se,i R
Using the approximation of‘;qﬁ%tion 4.40%and defining

°

r = . .
e, Kc,i + pelt (4.41)
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and
(xy 4 = (1)t
Yo" ~— (4.42)
’ . t,1 v
equation 4.39 becomes
(1"9)‘At . peAt R
’ . ’

For the first reservoir in the cascade, O°,i—l is the specified system
inflow, so equation 4.43 reduces to

see((10)e 1, +p0I )

Orer,1 = ¥e,17 %1 * T ‘ (4.44)
’

By defining

u

el (4.45)

= . + .
(1-p)I_+op L
the governing equation for the first reservoir in the cascade becomes

< L] At ..—
Oer,1 * Y1 %1 * T Vel (4.46)

»

The governing equations for subsequent reservoirs can be found by.

- . recursively substituting for Op4 4~ 10 equation 4.43.

Define
At
Tt,i — (4.47)
: t,i
and
= ¥ » 4y
Qt,i (kl-o) +p t.1 £4.48)

&

The’vaiue-of the element for the jth row and mth column of the‘ﬁx ¢
a . 9

matrix in equation 1.l is



t,m

] *p

t,m
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for m > 3 (4.49)
for m = § (4.50)
£, for m = j-1 ) (4.51)
j-m=1 J
« I Tt { for m < j-1 (4.52)
{=m+1 =°

where [ is the product operator.

The jth row of the Gy ¢ matrix is
9

R | (4.53)

Equations 4.49 through 4.53 complete the'informa:ion needed to

construct a nonlinear state space routing model. The steps that have

led to this point can be summarized as

1.

3.

5

development of a linear state space routing model, having
7y
constant parameters a; n and k, with an {mpulse response

identical to°the linearized Saint-Venant equations,

"determination of the variations with flow level of the mean

and variance of the linear state space model>impulse
response function,

relation of the variations with flow of the impulse response
function's moments to var;acioné of the parameters a,.n and
k,.and | | |

derivation of the state transition and input coefficient

matrices as functions of flow level.

The theory is now well defined: let the model parameters vary

with flow and simulate using equation l.l. There are, however, many
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wvays to implement the theory, and many possible algorithms for

. simulation. The general approach in developing the nonlinear state
space model is to retain as much of the theory as possible while keeping
the model algorithm simple. The final algorithm, prasented here,
incorporates all the theory developed in this dissertacioﬁ. The
preliminary algorithms are described in the following section. dAs more
6f the theory was introduced into the approaches to state apdcé
modelling of unsteady flow, thé results compgred more favorabiy with the
solution of the full Saint-Venant equations. The final algorithm
emulates well the solution of the complete equations of unsteady flow
over a wide range of channel and wave conditions.

The algorithm for simulating with the nonlinear state space model

l. Compute the average of the outflows from each of the n

reservoirs at time = t, and the current system inflow

. i)/(n+1> . (4.54)

where ] is the summation operator.

2. ‘Use‘6?+l with equation 4.33 and 8y at 0, (the number of
reservoirs at the reference flow level) .to gihd the number
of reservoirs needed (ng4))» and round this ;aluerto’the
nearest integer. |

3. 1f Ry .1 # 0¢, interpolate the reservoir outflows to compute

a new X, state vector of dimension ngpyy- .

4, Compute the average flow through each reservoir;
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for the first reservoir
T =(T .+ 5
Q:,l (u:+1 ot,l)/z (4.55)

and for subsequent reservoirs
— - + h
%,1 (0:,1. °c,1-1)/2 (4.56)

5. Compute values for a, , and ke, 4 for the flow levels -

determined in step 4, using equations 4.31 and 4.35, and the

A

values for ao and ko at Q 0°
6. Compute barameter a as the average of the delays for the

flow through each of the Ny, reservoirs, as
Om

) /n | S kST

a, . =(1a

g1 Ol

7. Compute the elements of Ex,: and Gx ¢ with equations 4.49

o

through 4.53.

8. .Coppute §t+1 with equation 1.1,

9. Lag the output by a_ ., and

t+1
10. increment the time and return to step l.
This algorithm allows all Varamefers of tﬁg nonlinear state Spaéev 2
model to v;ry witlr flow as specified by equations 4.31, 4,33 and 4.35.
The thesis of this study is that these relationships can emulate the

behavior of the full Saint-Venant equations. Results verifying this

thesis are presented in Chapter V.

%
<

The Path to the Final Model

3

> The algorithm for the final nonlinear state space routing model

performs the necessary sequence of steps to assure that the variations

with flow of the moments of the impulse response function for the
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linearized Saint-Venant equations obey the previously derived
theoretical relationships. The approach ;aken to reach that final
algorithm was to begin with a simple algorithm and add éémplexity only
{f it improves comparisons with the full unsteady flow model.-:

The major factor complicating the implemeuntation of the nonlinear
state space model is the variation with flow of the number of

]

reservoirs, n. ?hete.ate n elements in the state vector, X. letting n
vary with flow 1mp11e; that the dimensionality of X changes over time.
Initial algprithms were deéigned to keep n fixed. That simplified the
algorithm, but imﬁediately introduced theoretical ﬁroblems. |

The lag through a cascade of iinear reservoirs is

b, =a+ ; . (4.58)

Equations 4,31, 4.33 and 4.35, which define the variations with flow of

a, n and k, can be substituted into equation 4.58 to produce

o~ gUm/a o{r=/m (4.59)
2 QZm—2+r)7m . )

or
‘, ~ lm/m  (m)/m ) (4.60)

Both terms on the right hand side ‘of equation 4.60 vary with flow to the

(1-m)/m power. If equation 4.33 is simplified’as

n=n B . (4.61)
0 :

~where" %, = a constant, then, in order to maintain the variation with

" flow of the lag indicated by equation 4.60, the variation of k must

become
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Kk ~ Q(n—l)/n - (4.62)

Equations 4.62 and 4.35 are not consistent. Ho}ding thg number of
feservoirs constant warps the variation with flow of k. ‘Because k is
also ;he inverse of x in equation 4123, the stotagé.computed for each
reservoir is no longer that predicted by the theory.

If the pure delay, a, 1s held constant, equation 4.60 becomes

e

(l-m)/m

£, = " +q (4.63)

a

which is inconsistent with previous.results. The va?iation of parameter
k cannot obey boéh equations 4.35 and 4.63.

In spite of these theoretical shortcomings, several simpler
algorithms were developed for a nonlinear state space routing model. 1In

each case, the simplification led to a theoretical inconsistency. The

initial algorithas, with n = ny, are:

A) 1. Fix a = a, at a reference‘EIOW‘level.

2. Compute the lag for each reservoir with equation 4.7.

.3. Solve
n
k = __ 0 (4.64)
t,1 (tz - a )
t, 1 0

4. Compute_fx’t and Gy, ¢ using the kt,i;s and equations
4.49 through 4.53. ’ '
5. Predict X,,y with equatioé l.l,k?nd

6. Delay the output by a4-



B) 1.

3.

5

c) 1.

6.

156

Fix k = k, at 2 reference flow level (Compute F and G
for k = ko).

Compute the lag for the average flow through the cascade

with equation 4.7. -
Solve
n .
a, =t - 2 (4.65)
t 0

Predict X,y with equation 1.1, and

Delay the output by a,,

2

Compute k¢ 4 for each reservoir with equation 4.7,
Compute the lag, tzt’ for the average flow through the
cascade with equation 4.7,

Solve

(4.66)

Compute Fy  and Gy ¢ using the ke,i's_and equations

4.49 through 4.53
Predict X, ., with equation l.1, and

Delay the output by a,-

Theoretical inconsistencies caused those preliminary algorithms to

L)

emulate poorly the behavior of the primary model. Parameter variations

with flow were warped by the improper governing equations.

The next step on the nath .to the final algorithm was to let the

number of reservoirs véry with flow. That allowed theoretical

consistency to he maintained, but incresed the complexity of the
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algorithm. At this point the number of state variables could change
over time; therefore, some mechanism had to be developed to produce a
new state vector X, with ng4) states from an existing Xy with n,

states. All the algorithms studied thus far had assumed that the states
(the elements of vector X) were reservoir sforages. Reservoir storage
and outflow are interchangable, given kc,i- with equation 4.36.

However, when the number of sFates c#h vary, storage 1s an inconvenient .
choice for the'state‘vatg§ble. The approach taken to change the number
of states when the states are stsrage isbté maintain continuity., That,
is, to.keep the same totai volume of water in the ni reseévoirs as is
origiﬁally in the n, reservoirs.

Letting n vary when the states are storage created problems
because the value df kel 1 ;hangas smoothly, while n¢y) 18 an abrupt
change fromknt, ?he simulatéd outflow for the channel (i.e., from the
Tyl reser#oir), computed with equation 4.36, has discontinuities when n
chaﬁges; Those jumps in the flow become more exaggerated as n becomes

small, because the percentage change between ng and npyy incgeases.r

?6 circumyent those problems, the algorithm was reﬁtitten with
reservoir outflow as the.states: )When n changes, the flows are linearly
1nterpolatea to produce the n;w states, and no abhrupt chaqges occur
bééause the downstream ocutflow is fixed AQring the interpolation.

The algorithm i{s now essentially {in final form. Interpretation of
the flow levels at°w;ich to compute the parameters, n, a and k, is the

last step. Originally, the parameters of the nonlinear state space

model varied with the Treservoir outflow. The new number of states,

O 41, wWas found with equation 4.333using
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Qyy - 3-1 0, 4 ‘ (4.67)
The at’i'cnand ke, 1's were found with equations 4.31 and 4.35 using
q . =0 “ T (4.68)

t,i t,i

Equqtions 4,67 and 4.68 look only at the reservoir outflows to solve for
a, n and k. The eéugtiqns contained in the final algorithm (equations
4.54 through 4.56) usi_an average of the inflow and outflow to -better
represent the conditions in thé reser;oir. |

These steps lead,-ffnallf, to theohonlinear state space routing
algorithﬁ presented. All the parameters vary with flow level.- in thisy
;ay the properties of the Saint-Venant equations' impulse response

function are matched by the nonlinear state space model.

Summarz

A nonliheet«stats space model that can emulate the behavior of the
equationé of unsteddyafldw has been developed. Results obtained by
simulécing with both the nonlinear state space model and th; DWOPER
model's numerical solution of the Saint-Venant equations are presented
in Chaptgr.v.

In general, however, any surface runoff or channel routing model
can be chosen ;s_the primary model. The 8trategy employed to emulate
any primary model is shown in Figure 4.12. The steps needed to fulfill

this strategy are prgsented in Chapter VI.

a



SELECT A
PRIMARY MODEL

ASSUME STRUCTURE OF
STATE SPACE MODEL

' DETERMINE IMPULSE
REPONSE PROPERTIES
AS FUNCTION OF
FLOW LEVEL

DETERMINE IMPULSE

REPONSE PROPERTIES

AS FUNCTION OF
FLOW LEVEL °

MATCH IMPULSE RESPONSE
FUNCTION PROPERTIES

- NONLINEAR STATE SPACE MODEL

.| AS SURROGATE FOR PRIMARY MODEL

Figure 4.12 General Strategy to Emulate
Any Primary Model
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CHAPTER V ‘ .
LIMITATIONS OF THE NONLINEAR STATE SPACE APPROACH

Introduction

s

The nonlinear state space 'model aeQeloﬁed in Chapter Iv.models the

stationary nonlinear behavior of the fu11>Saint-Vgnant equations with a
° . 77

nonstationary linear structqre. " Figure 5.} shows the process used to
verify that the nonlinear state space model can emulate the equations of
unsteady flow. Given a prismatic channel, the value of m can be found
with equation 2.28. For prismatic channel shapes defined by equation
2.23, the value of m will be the same for all flows. However, in
general, m can vary with flow if the channel shape if irregular, This
possiblilty is explored in Chapter VI. ’

For results presented in this chapter, m is constant for all flows
and can be found directly from equation 2f28. Givé; m, the variations

with flow of parameters a,‘n and k are specified by equations 4.31, 5.33

N

and 4:35. Reference polnts to fix the parameter values for a particular
channel shape, flow level and distance from the channel inlet are given
in Table 3.4. Recall that these parhmetér ya}ues were computed from the
moments of the inflow and outflow hydrbgrapﬁs by Eifs} using equations
2.53 and 2.54.to find the mean and vari;nce of the system response
function, and then applying equations 2.78 through 2.80, ?esﬁits from

the state space and NWOPER models for large 1aflow transients are

compared in the next section.

160
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PRISMRTIC— " | BY S
CHANNEL ® THE

- DETERMINE m FOR
GIVEN VARIOUS FLOW RANGES

IMULATION WITH
PRIMARY * MODEL

9

|

OF a, n AND 'k
WITH FLOW LEVEL

DETERMINE
VARIATIONS

INFLOW
HYDROGRAPHS

SN,
AN

N

1
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| NUMERICAL SOLUTION STATE SPACE MODEL
OF THE SAINT-VENANT AITH PARAMETERS

EQUATIONS (DWOPER)

a, n AND k

AN o
NS

s

COMPARE RESULTS

Figure 5.1 Verificatibn Process for the
Nonlinear State Space Model
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Verifi{cation of the Nonlinear State Space Model

Introduction

The noniinear state space and DWOPER models are compared for
various inflow hydrographs in rectangular ;nd triangular channels
described in Chapter III. The remaining figures in this chapter are
organized as shown in Table S5.l. Each of the 16 figures used to verify
;he nonlinear étqte space model corresponds to a figute‘in Chapter 1II,

comparing the linear state space and DWOPER models. The pairs of

corresponding figures are listed in Table 5.2.

o

Results for several single-peaked inflow hydrographs and a
double-peaked hydrograph are discussed fn the following sections. 1In
addition, the issues of continuity, the number of reservoirs required by
the state space model, and the CPU times to simulate these results are
presented.

Single-Peaked Inflow Hydrographs

A very rapid transient (04, = 3 hours) routed-in a rectangular
channel for 100 miles is shown in Figure 5.2. The nonlinear state space
model does not properly lag the rising limb of the outflow hydrograph.
This problem appears to be almost the same.§s that encountered for the
linear state space model in Figure 3.28. The causes of these problems
"are related, but the differences are important to understanding the

<o

nonlinear state space model. In Chapter TII, the parameters of the

state space model were fixed at the values for the referente;flow, Qo‘
In Figure 3.28, O, equaled 100000 cfs. A very peaked inflow hydrograph,

as when gy, = 3 hours, disperses rapidly as it moves downstream, The
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Table 5.1 Organization of Figures 5.2 through S5.17,
Comparing the Nonlinear State Space Model
with the Full Saint-Venant Equations
for Large Inflow Transients )

Rectangular Channel

° L =100 miles L = 400 miles
94n =. 3 hours ' Figure 5.2-———- Figure 5.3,
O4n = 6 hours Figure 5.4 , Figure 5.5
O4n = 12 hours Figure 5.6 Figure 5.7
Ofn = 24 hours Figure 5.8 Figure 5.9

Triangular Channel

L = 100 miles ‘ L = 400 miles
G4n = 6 hours Figure 5.10 Figure 5.11
Oin = 12 hours Figure 5.12 Figure 5.13
* Double=Peaked k;drograph
L = 100 miles 0 L = 400 miles
Q, = 100000 cfs Figure S.l4 Figure S.15°
Q = 10000 cfs -- . Figure 5.16

Q, = 200000 cfs ° -- Figure 5.17



Table 5.2 Pairs of Figures with Identical Input Data
Comparing the Linear and Nonlinear State Space
Models with the Full Saint-Venant Equations

for Large Inflow Transients

Figure Comparing Linear

Saint-Venant Equations

Figure Comparing Nonlinear
State Space Model and Full State Space Model and Full
Saint-Venant Equations

£ L T,
3029 teeeecncescnrcaceacacencns
31030 teeennnneeereessnnnncenees
3038 teiaeerenneereannaeeeeann
3039 tareeencnceccnaaens

30“3 o-ooouccco.oout'oino.oo-c-»

5.2
5.3
5.4

5.5 -

5.6
5.7
5.8
5.9

" 5.10

5.11
5.12
5.13
5.14
5.15
5.16
?.17
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peak flow a short distance from the channel inlet is significantly lower
that the inflow peak of 210000 cfs. This caused problems for the linear
state space model when its parameters were selected for Q0 = 100000 cfs,
because the flow in the channel was below this level the ‘vast majority
of the time. As we have seen in Chapter IV, channel lag decreases as
the flow level increases. This means that, since the actual flow was
almost élways less than the reference flow for the linear state spaceﬁ
model, it did not delay the hydfograph sufficiently. Tﬁe:efore, :he.
entire outflow hydrograph simulated by the linear state éﬁacq modei"id'
Figure 3.28 was earlier than the DWOPER model results.

The nonlinegr state space model does not adequately lag the rising
limb of the inflow hydrograph for a related but different reason. The
parameters of the nonlinear state space model are funccions of the
average flow level in the channel. The average flow in the first

reservoir is defined by eduation 4,55 as )

When an inflow hydrograpg rises very steeply, this equétion givgs.falée
information about Ehg actual ave;age flow for that reservoir. The
assumét;on impl?cit in equation 4.55 i{s that the average flow is equal
to the average of the reservior inflow and outflow. If the inflow

; dispersés very rapidly, equation 4.55 provides a poor representation of
the actual average flow. The average flow predictéd'bg éﬁuaéion AlsS
‘Qill.a}ways be high for thé risfng limb of a hydrogr;ph. For.a very
ta;idly riéing hyarograph it will be signifigantly high., For a short
channel length the problem is compounded because thé total number of

reservoirs is small and, therefore, the first reservior has a larger
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impact on‘?ﬁcfoutflov hydrograph. The parameters of the fiist reservoir
of the noniincat state space model are computed at a reference flow
level higher than actually in the channel. Therefore, as with the
linear state space model, the outflow is earlier than the DWOPER model
resulis.

There is, however, a substantial improvement ln the recession, or
falling limb, of the atafe space model outflow hydrograph from Figure
" 3.28 to Figure 5.2. Once the rapidly varying portion of the inflow
hydfograph has entered tge Ehannel, th;’eﬁuacions for choosing reference
flow levels are ?uch more representative of the actual channel
con&itiong. Since the lag and dispersive properties of the nonlinear
state space model can vary‘by changing parameters values, the model is
able to match the recession portion of the DWOPER model oncfiow
hydrograph.

Acaacdistanée of 400 miles from the chann;I inlet, sho;n in Figure
5.3, results fpom the nonlinear state space model are greatly improved )
over those of the linear state space model in Figure 3.29. The outflow
hydrograph ffom the linear model arrives much too early because its
parameters are fixed at Q, = 100000 cfs. The nonlinear state space
model is much closer to the lag of the DWOPER model because its
parameéers var; with fioﬁ level in the channel. The rising limb of the
nonlinear state space model outflow hydrograph is too early in Figure
’5.3 for the‘saﬁa reasons given for Figure 5.2. The situation is
ameliorated at 400 miles frqm the channel inlet, however, because the

total number of reservoirs is increased and the first teservoir has a

9
proportionally smaller influence on the model outflow.

e
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Figure 5.4 presents results for a less abrupt inflow hydrograph
(°in = 6 hours) at L = 100 miles. Again, there are some discrepancies
between the nonlinear state space and DWOPER models for the rising limb
of the hydrog;aph which are caused by an improper representation of the
average fliow in Qach reservoir and, therefore, an incorrect choica of
state space model parameter values. After the abrupt portionAof the
inflow hydrograph has entered the channel, the nonlinear state space
4.model agreesivery closely with the recession poftiqna;f ;hq DWOPER model
outflow hydrograph. This is a vast improvement ovgf the ifnéar model iﬁ
Figure 3.30, yhich displays the almdst symmetrical qhape t#bicql gf a
* linear modél. .

A 0y, = 6 hours inflow hydrograph routed 400 miles in a
rectangular channel is shown in Figure 5.5. Thg timing of ﬁhe peak
predicted by the state space model is very close to that from the DWOPER
model. Although t§; rising limb arrives at the channel outlet too soon,
the shape of the recession 18 a significant impfovement over the linear
model in Figure 3.31.

A comparison of Figures 3.32 and 5.6 provides a classic example of
a linear versus a nonlinear model re;ponse. The nonlinear state space
model for 04, = 12 hours at 100 miles in Figure°5.6 produces,an outflow
hydrograph with sharply rising and slowly falling limbs;'and matches the
DWOPER model response very well. Outflow from the linear state space
model in Figure 3.32 tises too slowly and falls to rapidly. It is
doomed by its linear structure to fail when trying to emulate a
nSnline;r model. . >

At L = 400 miles, in Figures 3.33 and 5.7, the linear versus

nonlinearoeffect is even more pronocunced. Although the outflow from the
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nonlinear state space model begins to rise too soon, the steepness of"
its ascent is, in general, equal to that of the DWOPER model. This is
in sharp contrast with the Gaussian shape of the linear model in Figure
3.33.

The linear state space model performed adequatély for the more

" slowly varying inflow hydrograph (g4, = 24 hours) aﬁ 100 and 400 Q;les
from the channel inlei as was seen in Figures 3,34 and 3.35."As shown
in Figu;e 5.8, the m;jor imprermentsaintroducgﬁ by the nonlinear state
space model at 100 miles are at the beginning of the rising and end of
the recession limbs of the outflow hydrog:;ph. The DWOPER model is
matched very well by the nonlinear staté spice godel. 'A: 400 miles from -
the channel inlet, shown in Figure 5.9, the nonlinear state space model
has ﬁ}oduced an outflow hydrograph closer to that from the DWOPER model
than was possible with the linear model.

As mentioned in Chapter III, the incfementai improvement from
Qsing a linear rather than a nonline&r model would be expected to be
greater fo; a rectangular channel than for;a triangular channel.; The
behavior of a triangular channel is moré linéar than‘f?r a-rect;ngﬁlar
channel. Hoﬁever, even for a triangular channel, the nonlinear state
space model shows improvemeat over th; linear state space model.

Comparison of Figures 3.36 and.5.10 forcin ='6 hours in a
triangulat channel at L = 100 miles shows that the noniinear state space
model approximates the recession portion of the-SWOPER modél outflow
hydrograph better than the linear model. At 400 miles from the channel
inlet, as shown in Figure 5.11, the nonlinear state space model.outflow,
closely resembles the DWOPER model results except for an early rising

1imb. The timing of the peak flow is much improved over the linear

model outflow seen in Figure 3.37.
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For Gyq ™ 12 hours in a triangular channel, results from the
nonlinear state space model compare well with the DWOPER model, as shown
in Pigures 5.12 and 5.13. Although the timing of the linear state space
model, seen in Figures 3.38 and 3.39, was good, the nonlinearities in
the rising and falling limbs are modelled significantly better by the
nonlinear state space model.

Typical hydrograph durations for natural channels vary widely
(Chow 1964, pe 25-5). An empirical relationshop for the time base of a
hydrograph was developed by Snyder (L938) as . |

i .

T =3 + —%- | ‘ (5-1)

where is the lag time to the peak of a unit hydrograph in hours, and

“p
T has units of days.

The unit hydrograph peak lag tiﬁe can be expressed as

(L.Lc n ’ ' ' ’
t =C _ .2)

<

where C, is an ;mpirical coefficient (usually equal to 0.35 for a
valley drainage area,’
L is the river mileage through the basin,
Lo is the river mileage from the basin outlet to the basin
center of mass, |
s is the basin slope in feet per mile, and
n is an éﬁpirical coefficient equal to 0.38 (Linsley, Kohler
and Paulhus 1958, p. 207).
~ An approximation of the hydrograph duration can.be found with equations
5.1 and 5.2. Hydrographs with g, > 12°hours would be expected for most

basins. For inflow hydrographs of this duration equation 4.55
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adequately captures the rising limb, and the nonlinear state space model

emulates well the primary DWOPER model.

A Double-Peaked Inflow Hydrograph )

At 100 miles from the channel inlet, the nonlinear state space

model approximates well the DWOPER model for the double-peaked inflow

hydrograph shown in Figure 5.14. As with results presented above, the

- )

 major improvement of the nonlinear model over the linear state space

o

a

model is in the shape of tharising‘limb andrfn the recession of the
outflow hydrograph. |

In Figure 5.15, a doubie-peaked hydrograph is routed 400 miles
with the nonlinear state space and DWOPER models. Regults from thé two
models resemble each other very well for the entire outflow hydrograph
duratign. Figures 5.16 and 5.17 look identical to Figure 5.15.
Ndhlineér statebspace model pgrameters were chosen at Q0 = 10000 and -
ZOOOOQ cfs in Figurgs 5.16 and 5.17, fespecqively. These figures should
be'coméared with Figures 3,42 and 3.42 for the linear stateyspac%
modei. Theﬂreference flow level at thch parameters are selectéd is
critical to the linear state space model behavior. The variations with
flow level expressed in equations 4.31, 4.33 and 4.35 make the noniinear

state space model insensitive to the flow level at which its reference

parameter values are chosen.

> s

Continuitz

' The linear state space model was guaranteed to preserve continuity

(i.e., to make certain that the water léaving’the channel equaled the
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water entering). With constant parameters, each reservoir in the lipear
cascade let all the water that entered pass through with no increase or
decrease in quantity. However, there is no such guarantee with the
nonlinear state space model. In fact, it is almost certain that the
volume of an inflow transient will be modified in some way because of
the variationslin parameter values.

As with any discrete-in-time model, the nonlinear state space

model produces an outflow value each time step. The pure delay, a,

'changes with the flow level in the.channel. The time for which the
outflow applies is equal to the time steps- taken since the simulétion
began plus an adjugtmen: éor the pure-delay. This means that the time
period for which an outflow value applies may not be one time step after
the.previous value simulated. When flow in the channel is increasing,
the value of a will decrease. This allows the nonlinear state space
model to approximate the steep rising limb of the outflow hydrograph of
the DWOPER model. Similarly, the slow décay of the hydtograph's-
recession 1is modelled b; increasing the pure deléy as flow ;n the
channel decreases. Howe;er, this means that the outflow from the last
reservoir may apply'forqless or more than a single time step. During
the course of an inflow transi%nt and return to baseflow level, the
errors in continuity should compensate.
Results presented infTablg 5.3 indicate the degree to which this

is true. The steéply rising inflow hydrographs (o4, = 3 hours) cause
the nonlinear state space modelito diverge from continuity by 7 to 9

percent. For all other inflows, the nonlimear state space model is

within plus or minus 3.3 percent of maintaining continuity.
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Table 5.3 Cbntinuity Check for the Nonlinear State
Space and DWOPER Models for Results of
Figures 5.2 through 5.17

Ratio of Outflow '
to Inflow for the * Ratio of Outflow -

~ Nonlinear State to Inflow for the

Figure . ~_State Model DWOPER Model -
5.2 ' 1.070 0.999

5.3 1.093 "~ 0.985

5.4 0.999 1.000

5.5 1.033 0.985

5.6 0.995 1.000

5.7 - 0.997 1.000

5.8 - 0.998 1.000

5.9 o 0.995 1.000

5.10 3 1.026 - 1.000 .

5.11 ‘ 1.030 , n.999

5.12 o 0.998 1.000

5013 - 1.003 0.999

5.14 | 0.995 1.000

5.15 . 0.988 1.00G

5.16 0.991 1.000

5.17 , 0.990 = ° ' 1.000
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The Number of Reservoirs

Conceptually, the DWOPER model is similar to a cascade of
nonlinear reservoirs. Each of the distance steps along the channel at
which tpe Saint-Venant equations are solved can be fhought of as a
nonlinear reservoir governed not by equation 4,23, but by the equations
of unsteady flow. The number of distance steps used to simulate the
results presented above ranged from 10 for gy, = 24 hours to 160 for
94n = 3 hours. The ﬁumﬁer of reservoirs in the nonlinear state space
model is a function of flow level in the channel. It must be an integer
each time stép, bu; var;es over time as the inflow transient rises and
ebbs. The aQerage numbers of reservoirs in the nonlinear state space
model cascade are presented in Table 5.4, The ratio of DWOPER model
distance steps to nonlinear state space model reservoirs varies from 1:1
to 13:1. We Qould expect the average number of reservoirs to decrease
as the gy value increases because the flow level in the channel is
higher for a longer period of time and, therefore, the number of
reservoirs decreases. This is not seen in Table 5.4 because the total
simufagion period was increased as 0,, increased to capture the entire

outflow transient.

*CPU Time -

Although difference§ in the nonlinear state space and DWOPER @odel
reéul:s shown in;Figgres 5.2 through 5.17 are generally small,
differences in Eﬁe CPU time required are sometimes large. The CPU times
required by all the nonlinear state space and DWOPER model sumulations

are presented in Table 5.5. The DWOPER model requires approximately 2
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Table 5.4 The Average Number of Reservoirs Used
by the Nonlinear State Space Model
in Figures 5.2 through 5.17°

Rsctaggélar Channel

a

L =100 miles L = 400 miles
94q = 3 hours 3.533 12,212
94a = 6 hours .08 .- 10.375
Oyn = 12 hours 3.085 : 11.050
9in = 24 hours 3.201 ' 11.894

Triangular Channel

"L = 100 miles L = 400 miles
94a = 6 hours 2.712 ' - .9.571
04q = 12 hours 2.413 . 8.534
Double-Peaked Hydrograph
L =100 miles L = 400 miles
Q = 100000 cfs 3.057 - S 11.227
Q, = 10000 cfs - > 11.140

Q = 200000 cfs — 11.243
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Table 5.5 CPU Times for the Nonlinear State Space and
DWOPER Models on a PRIME 750 Computer for

~_ Results of Figures 5.2 through 5.17

o

anlinear State

94n L Qo Space Model DWOPER Model
Figure (hours) (miles) (1000 cfs) CPU Time CPU Time
5.2 -3 100 100 1.31 sec -
503 3 400 100 5.15 sec 409.06 sec
5.4 6 100 100 * - 0.27 sec -
5.5 6 400 - 100 0.74 sec 175.87 sec
‘ 5¢6 12 100 100 0.23 sec -
5.7 12 400 100 0.63 sec 63.80 sec
5.8 24 100 100 0.35 sec -
5.9 24 400 100 0.95 sec 23.58 sec
Triangular Channel
Nonlinear State
94n L Qp Space Model _DWOPER Model
Figure (hours) (miles) (1000 cfs) CPU Time CPU Time
5.10 6 100 100 1.50 sec --
Sell ) 400 100 6.57 sec 256.64 sec
5.12 12 100 100 N.49 sec -
5.13 12 400 100 2.17 sec 49,08 sec
Double-Peaked Hydrograph
- Nonlinear State
94n L QO Space Model DWOPER Model
Figure (hours) (miles) (1000 cfs) CPU Time CPU Time
5.14 -- 100 100 1.10 sec -
5.15 R 2 400 100 4,36 sec 77.25 sec
5.16 -t 400 10 4,34 sec 77.25‘sec'
=517 -- 400 200 4.35 sec 77.25 sec

)
Pl
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orders of magnitude more CPU time than does the nonlinear state space

model;

Summarz

~

Results from the nonlinear state space and DWOPER models have been

compared for large inflow transients in rectangular and triangular

prismatic channels. Inflow hydrographs of varying durations, and a

double-peaked inflow ;ere routed thr0ugﬁ channels 100 and 400 miles

long. The results presented in this chapter have demonstrated that:

l.

Many of the important nonlinearities in the full Saiﬁt-Venant
equations érq;emulated by the nonlinear state space model.
The équations for céﬁputing average flow in a reservoir
generate flow levels that are too high for sﬁeeply rising
infLow @ydrograbhs. Yhis leads to improper state space model
pa;ametér select;on and degraged model performance.

The nonlinear state space model éppﬂoximates well the outflow
hydrograph reces;io; of the DWOPER model for all inflow

hydrographs gresenced.'

The problem in ChgpteraIII of an outflow hydrograph that is
too symmetrical is solved with the nonlinear state space
moéel, .
Tﬁe nonlinear égate spacelmodel typically preserves
continuity»within plus or minus 3 petcent.

The DWOPER model ;equires~app;oximate1y 2 orders of magnitude

more CPU time than the nonlinear state space model.

<

The Saint-Venant equations have been our exémplar»model to

i{llustrate the new perspective of routing in hydrology. A generél

strategy to emulate any primary model is the subject of Chapter VI.






CHAPTER VI N
HOW TO EMULATE ANY PRIMARY MODEL

Introduction

=

Results presented in Chapter V demonstrate that the the nonlinear
state space routing model can emulate the full Saiht-Vénan: equations.

>

This is only one application of the general approach to 'nonlinear
modelling. The nonlinear state spacé model's structure should allow it
to imitate the behavior of any surface runoff or channel routing

model. This chapter describes, in detail, the steps necessary to

emulate any primary model. Figure 6.1. summarizes those steps.

2

Select a Primary Model

The obvious first step is to choose a primary model. The priméry
. . N 3
model is chosen based on the data available to describe the physical
system and the computational. resources committed to simalate the

catchment or channel.

Calibrate the Primary Model

ES
The primiry model must- be, calibrated to the chahnel or catchment
of interest. 1In general, the parameters of the nonlinear state space

model are determined based on simulation with the pfimary'model. The

behavior of the nonlinear state space model emulates the primary model,

193
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SELECT A
- | PRIMARY MODEL

CALIBRATE THE PRIMARY MODEL
T0 THE CHANNEL OR CATCHMENT

USE THE PRIMARY MODEL TQO COMPUTE
| RESPONSE TO INFLOW TRANSIENTS AT
SELECTED FLOW LEVELS o

COMPUTE MOMENTS OF THE IMPULSE
RESPONSE FUNCTION FOR EACH TRANSIENT

ESTIMATE m, o, n AND k
AS FUNCTIONS OF FLOW LEVEL Q

~ mBAND g, n,, k, AT Q, |
ARE THE PARAMETERS OF THE
NONLINEAR STATE SPACE MODEL

Figure 6.1 How to Emulate Any Primary Model
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80 any errors in calibration of the primary model will affect the

performance of the nonlinear state space model.

Determine the Impulse Response Properties of thé Primary Model

Ideally we would determine the weighting function that the primary
~model uses to transform input signals into output signals.
Unfortunately; it is physically impossible to observe the'weighting
function of a system. As described in Chapter II; for a linear:
stationary systquche weighting gunction is the time-reversed‘iﬁage of
theﬂsystem impulse response. The premisé of this.work\is that the
mathematical behavior of a nonlinea;‘stationary system can be
represented by a linear model whose impulse response ma;ches that of the
nonlinear system at all levels of flow. The impulse response of a
nonlinear‘system changes with flow level; if it did not, the systenm
would be linear. To emplate the changing impulse respoﬁée of the
nonlin;ar system, the linear model must be nonstationary (i.e., its
parameters and, therefore its impulse response, must vary with flow
"level).

Study of the ;ariations in the mean and variance of thé impulse
response function described in Chapter IV indicates that within - flow
ranges where the channe1 shape is regular, the moments of the impulse
response function of the Saint-Venant -equations changé as simple

- B
algebraic powers of the kinematic wave parameter, nm. Therefore, the
value of m can be found from the variations with haseflow level of the
moments of the system impulse response. Equations 2.53 and 2.54 eiprgssﬁ
the mean and variance of the system impulse response function. Forvthe

mean or variance, the moment of the impulse response function is equal
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to the dif’i;rcncc of the moment of the system o_u:put and the gystenm
fnput. TIf small inflow transients (i.e.; 10 perce;t of baseflow) are
input to the primary model at several baseflow levels, the means and
variances of the inflow and outfloﬁ can be determined for each baseflow
level., Transient inflow h}drographs canbbe groduced with the Fortran
program listed in Appendix B, . Inputs to th}s program are: |

le Qo, the baseflow levei,

2. Op, the incremental transient flow ievel,

3. Qs the flow level about which the equations are linearized,

f4.° O4ns the étandard devi;tion of the hydrograph;produced,
5 dSO' By and m, which define the channel geometry, and
6 éHeftime step and total period for which che‘hydrogtaph will
be generaﬁed.

In general, the means and variances of the impulse response will
vary with flow as shown_in Figures 4.3 through 4.6. The value of m can
be found from the slope of the systém impulse response mean (the lag
introduced by.the channel) versus discharge rela:ionship in log space
with equation 4.7. The slope_of the lag versus flow level in log space-
may change with flow level for>a general channel shape. AbruptAchanges
in channel geometry can introduce nonlinearities not accounted for with
the algebraic power relationship of impulse response properties with
flow. In fact, for a trapezBidai‘prismatic channel, the val;e of m must
vary with flow. For shallow flows, a trapezoida} channél behaves like a

. rectangular channel with an m value of 5/3. As the flow deepens, the

trapezoidal channel operates more like a tfiangular channel and has an m

value of 4/3.
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The value of m can generally be expressed in a pilecewise constant
versus flow manner as in Figure 6.2. The flow ranges over which m is
constant can be determined by the flow levels wﬁere the slope is
constant in the log(lag) versus log(discharge) relationship.

For the particular application explored in Chapter V, the valde of
m was constant for all flows and could be obtained given the prismatic
channel shape. For any prismatic c%annel shape that obeys equation
2.23, the value of m can be fouﬁd from’Manning's'friction formula. 1In
addition, the mean and variance of the system impulse response are
expressed as functions of reference flow level by equations 2.56 and

2.58. 4 | .

Estimate a, n and k as Functions of Flow Lével

. " The final pieces of information needed for_thé nonlinear state

space model are reference values of the model parameters (an, ny and ko)
at any flow level Qo in each of the constant m ranges. The variation of
parameters with flow is specified by the value of m. The single
reference point at flow level QO fixes the functions for a, n orlk. The
Qaluég of ay, 0 and ko can be found from the impulse response mean and
variance for a small transient input on a baseflow, % w;tﬁinjthe range
of flows for which m is constant. The reference parameter values are

~comp6£ed with equations 2.78 through 2.80.

Parameters of the Nonlinear State Space Model |

The parameters of the nonlinear state space model are now

specified, Given m and a,, nj and k; at flow level 0, for each constant
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m flow range, any inflow transient can be modelled with the Fortran
program listed in Appendix C. The behavior of the nonlinear state space

model mathematically emulﬁtes the primary model.

N
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CHAPTER VII -
RELATED PREVIQUS WORK

Introduction

Many other authors have approached the p:obleﬁ of routing surface
runoif or channel flow. This chapter deséribes pertinent previous work
in thf field of hydrology.‘,$ur2;ca ;uncff and channel routing models
;elated to the nonlinear state space model by either their common
cascade of reservoirs structure or ap%roach of modellin; nonlinearities
by varying parameter values are described in the next section. Observed
flow level versus lag time data which corroborates the theoretical
relationships developed in Chaptef iv are presented. In addition, the

nonlinear state space and Muskingum—Cunge models are compared with the

DWOPER model for a 400 mile long rectangpiat channel.

>

Related Routing Models

Early work with -models éodsﬁructed as cascades of reservoirs is
attriSuted to Nash (1957) and to Kalinin and Miljukov (1958). Many
authors followed this work in attempts to model a catchment's
instantaneous unit hydrograph (1UH) (Rao, Delleur aqd Sarma 1972; Sauer

'¢1973; Pedersen, Peters and Hel&eg 1980). The IUH is the common term in
the field of hydr@logy_for a System's impulse ;espénse function., More
recent work with cascadegiof reéervoirs has dealt with thé development

©

of a state space model of the Nash cascade kSiollosi—Nagy 1981). The

200
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above-mentioned works all deal with linear reservoir models'that are
strictly applicable only over a small flow range around the reference
discharge. .

Amorocho and Brandstetter (1971), and Napiotkoﬁski.and"‘
Scrupczewski (1981) worked with intégralfforms of the open ch#nnel flow
equations to parameterize thﬁ properties observed in the IUH wﬁen
routing unsteady flow. The resultant mathematicél f&rms were cumbersome
and not amenable to state space fdrﬁulatioﬁ; Reefer andeﬂcQ;ivey (1974)
took the approach of splitting the flow rangelipco gsections and forming
a linear model in each range. Calibraci;n of -the multiple linearization
model was complicited because an impulse response function had to be
found for each flow range. They recogniged that the IUH varies with
flow, but did not study the form of that variation. |

Othef authors developed simple nonlinear models of surface runoff
or channel flow (Singh 1964; Dooge 1967; Prasad‘1967; Reed, Johnson and
Firth 1975; Singh and Buapeng 1981). These studies of the IUH generally
expressed the impulse response properties in terms of basin
characteristics ;hrough complex regression formulas. Reed, Johnson and
Firth comment that further study to determiqe.the form of the
relat{onship between physical factors and variable lag is needed.

Several authors let model paraéeiers vary with time rather than
flow level., Mandeville and O'Donnell (1973) developed time varying
expressions for linear reservoir and linear channel equations. The time
varying functions for résefvoir aﬁdachannel parameters are fit to
observed data. A model in which the parameters change with the season
of the year was developed by Chiu and Bittler (1967). They attempted to

model the observed nonlinear phenomena by looking for cycles in flow

patterns from year to year.
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Mein, Laurenson and McMahon (1974) presented a nonlinear storage
reservolr model with the proper structure to simulate the nonlinearitieé
in surface runoff or channel flow. The variation with floﬁ of the
nonlinear properties is empirically fit to observed data. Their model
cannot easily be put in state space form.

Schaake (1965, pp. 76-92) recognized that the IUH derived from the
‘rising portion of a large surface runoff event Qas different than the
IUH from the.recession, and that the imbulse response function varied
with thg magnitude of an event. He concluded that the differences were
,causédkby’nonlinear ptdpertieé of flow routing for large transients.

Because of Schaake's.analysis, Valdes, Fiallo and Rodriguez-Iturbe
(1979) studied incremental IUHs and concluded that there were not
significant differences in the IUHs computed for the rising and falling
limbs of hydrographs fo; small inflow transients.

None of the médeis di;cussgd above has the important combination
of properties found in the nonlinear state space model developed in this
dissertatién. The analysis conducted in the éurrent work has recognized
thgt

l. the variations with flow of model parameters can be described

functionally by relating the parameters to the mean and
variance of the incremental impulse response for various fiow
levels, and

2. a state épace structure is invaluable fbr second-order

analysis by means of estimation theory.
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Observed Variations with Flow level of the System Lag Time

The variation of lag with flow level:has been known in hydrology
for some time. Laurenson (1964) empirically derived a telac;onship
between lag and flow level by analyzing hydrographs from the éouth Creek
Experimental Catchment near Sydney, New South Wales, for 1956,through
1960. Laurenson plotted the lag versus mean.flow values on linear, then
semi-log, and finally log-log axes. He found that the.data essentially
describe a straight line-in lbg-space. The data he used agd the
regression equation he fit to the data are shown in Figure 7.l1. The
slope of the regression line he fit in log=-space is -3.70., From
equation 4.22 we obtain a value of m = 1,37 for a slope of -3.70. This
value of m falls between those of a rectangular (m = 1.67) and a
triangular (m = 1.25) channel,

Agkew (1970) continued on the same path as Laurenéon, recognizing
the relationship between lag time and flow level. He fit slightly
different data than did Laurenson for South Creek, and determined
regression equations for lag versus mean flow for four other catchments
in Australia. The regression equation exponents and the associated m
values found with equation 4.22 are presented in Tahle 7.1. All the
values for m fall close to or within th; 1.25 to 1.67 range expected

theoretically for triangular and rectangular cross section shapes.

Comparison with the Muskingum-Cunge Model

The Muskingum-Cunge routing model is presented in Appendix A& as

equations A.7 through A.9. This model is developed from .a storage

routing equation using kinematic wave theory (Cunge 1969). The
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Figure 7.1 Lag Vexlsus Mean Discharge Relationship,
South Creek Experimental Catchment,
- ‘University of New South Wales



Table 7.1

Latchment

South Creek

Hacking River
Eastern Creek
Cawleys Creek

Research Creek

Values of m for Several Catchments

Slope from Askew
Regression Equation

=-4.149
-5.181
-3.802
=5.263
=-3.049

1.32

1.24
1.36
1.23
1.49
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Muskingum-Cunge model is the most versatile and physically relavent of
the storage routing models (Fread 1982).

The npnllnear state space and Muskingum—Cunge models are compared
with the DHOEER model‘in Figure 7.2. A single-peaked inflow transient
was vouted through a 400 mile long rectangular channel wiﬁh each of the
three models. Parameters of the nonlinear Qt;ce space mo&el are the
same as in Chapter V, for.AOO mile long rectangular channels,
Parameters of the Muskingum-Cunge model are derived from channel -
properties as shown in equations A.8 and A.9. |

The Musk{ngum—Cunge model matcﬁes, in general, the shape of the
outflow hydrogrﬁph produced by the DWOPER model. However, results with
the Muskingum—Cunge model peak slightly late and high, and remiin above
the DWOPER model outflow throughout the recession. The'nonlinear state
space model is early on the rising limb, but the timing of the peak flow
and the récessqu match the DWOPER model excellently.

The ratio of CPU time'required by the Muskingum-Cunge model to
that of the nonlinéar'state sgaée model‘;s approximately 25:1. The
distance step used in the numerical solution of the Muskingum-Cunge
equations was 5 miles; implying that the Mdskingum-Cunge model used 27
subreaches to simulate the example channel. Thé average number of
reservoirs needed by the nonlinear sfate space model was 8.057. This
ratio of the“dﬁmbe} ;f distance steps to reservoirs of 3:1 is consistant
with results presented in Chapter V, and is undoubtedly a contributiryg

factor to the additional CPU time needed by'the Muskingum-Cunge model.

o
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CHAPTER VIII o
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Conclusions

The work pteéented herein consists of a new perspective of routing
in hydrology and i{ts application. The new perspective was developed in
)
Chapter I. A particular primary model was then chosen to demonstrate
the applicability of the new perspective. The exemplar primaryvmodel
was thg set of equations of unsteédy flow in open channels. General
conclus;ons about the new perspective are: ’

1. The essence of this new perspective of routiné is its two-step
approach to the problems encountered with existing routing
technology. First, the physics of a system a}e modelled with
aiprimary model; then the mathematics of the primary model are
emulated by a state space model. The gtate spacé model is-a
model of the primary model. | )

2. Stationary nonlinear behavior of a primary model can be
emulated by a nonstationary linear model having a state space
formulation.

3. The nonlinearities present in ﬁhe primary model can be
captured by matching, at various reference flow levels: the
incremental impulse response properties of .the primary model
with a linear state space model structurg. 4

4. Using a primary model to account for the observed physics, and

‘mathematically emulating the primary model's behavior with a~

208
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state space model whose parameters vary with flow level ig
appropriate for modelling surface runoff and channel routing

phenomena for downstream flow in prismatic channels.

In addition, several conclusions derived from the application of the new

perspective to the Saint-Venant equations are:

1.

3.

7.

The impulse response function of the linearized Saint-Venant

- equations in a prismatic channel has the form of an inverse

Gaussian pdf.
For small (10 percent.éf'baseflow) inflow transients, the
inverse Gaussian pdf models well the behavior of the full

equations of unsteady flow.

‘The parameters of the inverse Gaussian pdf can be computed

from the moments of the channel impulse response function,
which is determined by simulating with the primary model for
small inflow transients.

For a prismatic channel, the inverse Gaussian pdf ﬁarameters
can be found directly as functions of the channel geometry.
Parameters of the inverse Gaussian pdf are related in a very
simple way to parameters of the gammé pdf.

A state space ﬁodel, based on the concept of a cascade of
reservoirs, has par;meters identical to the 3-parameter gamma
pdf. |

A linear state space model (i.e., one whose parameters afe
constant with flow ievel) is an édequate surrogate for the

£ | Saint-Venant eguations for small inflow transients in a
p:.smatic channel, but itg behavior deterioriates when large

transients are routed.



8.

9.

10.

11.

12

13.

e
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The mean and variance of the impulse response function of the
equations of unsteady flow vary as simple algebraic powers of
flow level; the expressions for the exponents are functions of
the channel geometry. i
A nonlinear state gpace model, whose parameters vary to match
the changes with flow level of the impulse response function's
mean and variance, is an excellent suréogate for the NWS
DWOPER model, which is a numerical solution of the full
Saint-Venant equations. ' '

The DWOPER model, which numerically solves the Saint—Vénant

4

equations in a very efficient manner, requires_approximately pA
orders of magnitude more CPU time og a PRIME 750 com;uter than
does the nonlinear state space model.

The ability of the state space model to emulate the full
Saint-Venant equations deteriorates for very abrupt inflqw
hydrographs, such as from a sudden dam failure, ;r a small,.
steep-sloped catchment.

The current form of the nonlinear state space model is not
.suitable for modelling channels with lateral inflow or =~
tributaries; however, this limitation should be eééil§
overcome.

Backwater conditions and upstream wave movement are not

accounted for because of the underlying structure of the state

space model, which is based on the diffusion equation.
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Recommendations for Future Work

Some of the inadequacies of current rbuting technology listed in
Chapter I are:

l. 1t produces no objective estimate of uncerEainty,

2. repetitive ébmputacions such as in flood frequency analyses
can be cos:}y fo; fully nonlinear models, and

3. error properties of models and data are not expressly
- considered. |

-The current work directly addresses only item 2 aﬁove. The fully
nonlinear state space model developed in this work is several orders ofq
magnitude more CPU time efficient than a numericai solution of the
Saint-Venant equations. Although the state space model has a structure
which is amenable to the application of estimation theory, and could
produce an objective estimate of uncertainty and consider error
properties,Athat’step remains for future work. Several intermediate
tasks are required to formulate a filter theory model from the nonlinear
state space model. These tasks include:

1. developing a‘stage versus discharge (rating curve) model which
includes é stochastic component to account for shifts in the
rating curve,

2. determining a technique to“specify values for the filter
parameters, and

3. addressing the theoretical problem of filtering when the
number of model étates varies witﬁ time.

The nonlinear state space model routes discharge on a éa;chment or

in a channel. Obsetvations_of hydfographs are most often made in terms

of stage or depth of flow. The relationship between stage and discharge
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1s not a simple one (Fread 1973). For a given stage, the discharge is
higher as the rising limb of a hydrograph passes a given point than
during the recession. This 13 because, during the rising limb, the
water level uﬁstream is relatively higher ch#n dpwnstreag, so the forces
moving the water along the channel are gre#&er. During a recession,
with the wave crest now downstream, the water surface slope is less and,
thereforef.a smaller force is acting on the water. In addition to the
A”vqyiations in rating curves due to water surface slope,.cﬁannel bed form
;hanges can have dramatic effects, especially ip sand bed rivers
(Simons,oStevens and Duke 1973); A suitable rating curve ﬁode}
" structure compatible with the nonlinear state space routing model and
yet accounting for the uncertainties inherent in the stage-discharge
relationship must be developed.

Kalman filtering is a technique that combines the information in a
model and measurements of a process to provide a better estimate of the
current‘conditions of the process chan either thé model or measurements

could give aione (Kalman 1960). A Kalman filter algorithm can be

{implemented as equation 1.l

and .

(8.1)

where X, F, G and U are defined as in equatton 1.1,

E{gt =0 .
e{v.} =0 :
- .
Bl Ueay | 08y =
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T
B{Tp Tepy | = B8y

"4

in which Y, 1s the vector of observations at time t,
By is the measurement matrix,

V. is the vector of measurement errors,

9 is system noise covariance matrix,

5: is.the measurement noise covariance matrix,

T indicates a matrix transpose,

E is the expectation operator, and ' K

51 is the D;rac delta function which i{s equal to 1 when
i=0 an§ otherwise 1is zero (Jazwinski 1970, p. 269).

Equation l.l is the structure with which the nonlinear s:at§ space model
was developed. In a Kalman filtéring algorithm it is called the system
equation and 1s responsible for propagating the system dynamics in
time. Equation 8.1 is called the measurement equation and is used to
incorporate information from measurements of the state vector, X, into
the filter algorithm. The filter parameters that must be specified are
the matrices O and R. Determining values for Q. and R will require a
major portion of the effort to form an estimation theory model of
surface runoff and channel routing with the nonlinear state space~model.
A theoretical issue th;t must be addressed before the nonlinear )
state space model can be used in a Kalman filter algorithm is how to
account for a varyinénnumber of states. The technique devéioped in
. Chapter IV to interpolate the outflows from each reservoir of 1etting n

vary works well when one is simulating with equation l.l alone. When,

however, the Kalman filter is processing, it propagétes not only the



.

state vector, but also the covariance matrix of the error in X. The

i,systel error covariance matrix has a dimensipn of n by n, with elements

that cannot simply be averaged, as is done with the state vector. The
first step in attacking this problem should be to explore the literature
of other physical science disciplines where estimation theory has been
extensively employed.

;The nonlinear state gpace model de%eloped in this dissertation is
based on a continuous function analysgis. The~approaqh taken Qas to work
with the gamma pdf, a continuous function. Differential equations that
match.the gamma pdf were developed as the nonlinear state space model
structure, This restricted us to small ti&; steps in the #ctual‘model
implementation since we weéé trying to emulate a continuous function.

An alternative approach is to ;ork with a 413crete function for the
inéremental impulse response function (i.e., the pulse response
function). The éeneral strategy would be to find a discrete function
with the analytical form of the pulse response, and then equate the
function and pulse response by matching their moments. Time steps for
_the model derived from a discrete an&lysis would be limited only by the
frequency properties of the inflow hydrograpg,“not by numerical aspects

of- approximating a continuous function.

By specifying the changes with flow level of the impulse response

* function in terms of its mean and variance, we have limited the shabe of

. impulse response functions that can be approximatéd by the nonlinear

state space model to unimodal ones. A different parameterization of the
impulse response function could allow multi-peaked system responses to
be simulated with a nonstationary linear model.structurg. An analy%ié

in the spectrél domain may be the appropriate approach for this problem.
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Surface runoff and channel routing comprise only a portionr of the
hydrologielgyclc (Eagleson 1970, pp. 5-8). _Subsurface flow routing is
another criiical path in the constant motion of water. The highly
nonlinear natﬁre of subsurfac; f}o; has been modelle§ with 2- and
J-dimensional ;arsionn of the equations of motion (Fagleson 1970, pp.
271-282). Groundwater flow is modelled with a conceptual structure in
the NWS.Sccramento Soil Moisture Aécounting (SMA) model (Burnash, Ferral
~and McGuire 1973, pp. 11-12). Models in state space form have been
developed fo;'the NWS SMA model (Kitanidis and Bras 1978, Goldstein and
Larimore 1980). These models retain the inherent structure of the
original NWS SMA model in a set of simultaneous differential equations
used as the system equation, l.l. It may be poésible to extend the new
perspective of routing to account for the highly nonlinear structure of
groundwater flow. The approach is not clear, howeve&, since the
nonlinear properties do not seem to be simple functions of flow level,
but instead are related to the interactions of many components.

A final area for future work is, of course, to use the nonlinear
state space routing model on real catchments and channels. Work with
real data was eschewed in this dissertation because the intent of the
new perspective is to use the state space model as a surrogate for a
ﬁo&ei of the catchment or channel physics. The objective of using an
exémpigr primary model was to develop the theoretical basis for relating
the primarfland state space models. Thg stfategy to employ the new
perspective has been presented in Chapter VI. Tﬁis strategy and the
Fortran programs listed in Appendices BvandVC must be tested for actual

-
catchments and channel reaches.



APPENDIX A . )
A REVIEW OF SOME HYDROLOGIC ROUTING MODELS

The complete Saint-Venant equations 6f gradually varied, unsteady

flow in an open channel are

3 (Av) -

¢ ' '
.and
1,3dv 3y v dv A _ q :
gﬁ+3—£+gﬁ+sf 503-———-‘3'A(ux‘v) (A.2)

wheté t = tinme,
x = distance along the channel,
y = depth of flow,
v = average velocity of the flow,
A = cross sectional area of the flow,
B = surface width of the flow,
g = the acceleration of gravity,
q = lateral inflow per unit length,
ugy = the x componentbof the velocity of the lateral inflow,
S¢ = the friction slope, and

S. = the channel bottom slope (Henderson 1966, p. 287).

(=]

0

The conservation of mass is described by the continuity equation, A.l.
The coanservation of momentum is expressed by the equation of motion,
A.Z;._The terms of equation A.2, from left to right, are measures of the

local acceleration, the pressure force, the convective acceleration, the
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friction force, gravity and the acceleration of the lateral inflow. The
quasi-linear, hyperbolic system of equatioqs defined by equations A.,l
and A.2 has no known analytical sqlution. Numerical solutions are
possible when ‘initial and boundary conditions are speciffed.

All channel routing models obey the continuity equatien, A.l, but
may be categorized based on which terms of equaﬁion A.2 they consider.
Certain rouﬁing models do not consider any terms of equation A.2, They

Ware“geng;ally called storage routing models and are based on the

o

continuity equation alone. Equation A.l is usually rewritten as

I-0=z ‘ (A.3)

where I is the channel inflow,
0 is the channel outflow, and
AS is the change in storage in the channel during a At time
interval.

The storage, inflow and outflow may be related by

S = Ke[XI + (1-X)+0] (A.4)

where K and X are model parameters.
Reservoir routing models, such as those developed by Puls (1928)
and Goodrich (1931) set X = 0 in equation A.4. Storage depends only on

outflow, and equation A.3 can be expressed in centered finite difference

‘form as

I +1 0 +0 S -8 » | |
L2 -1 2.2 : (A.5)

where the subscripts 1 and 2 indicate the previous and curreat time
steps, reSpectiveiy. Equation A.5 can be solved for the unknowns at the

current time step as -
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2:8 2:s
-—-L - - 0
Tt 0, =L +1 + <~ O, (A.6)

The oééflow o2 can be found given an $-0 relationship from observed

data.

The well-known Muskingum model can be fouﬁd by subEtituting

equation A.4 into equation A.5 to yield

) SRR e °
0 - c - I + C Py I. + C .o 0 - . (A07)

£
T
n
[a)
[
Q
(]

~(K X - A/2)/C, -

Q
[ ]

(KX + At/2)/Cy,
= (K - KX - At/2)/C;, and
C, = K- KX +4t/2 (Chow 1964, p. 25-40).

In the original Musgingﬁm‘model as developed by McCarthy (1938), the

parmaters K and X were determined frog observed inflow—outflow data.
Cunge (1969) developed the M;sk;néum model from kinematic wave

theory with a single-vglued séagé-discharge relationship. 1In the

Muskingum-Cunge model the parameters X and X of equation A.7 are

specified as

" K = Ax/c ' (A.8)
and
1 L L] L] . '
X = 5’“ - QO/(B0 e bx) ] (A.9)

where ¢ = %%5 is the kinematic wave spéed at reference discharge Qs

Ax = the reach length,

D e

SO = the channel bottom slope, and

B0 = the channei width at Qo.
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Kalinin and Miljukov (1958) developed another model related to the

Muskingum model, which is expressed as

-

- - . I -1)e
0, =0 * (11 0, ) R+ ( Jex (A.10)

. 2 1 2

where K =1 - e~(cat)/ax

I(.2 -] - KL'Ax/(C°At), and

Ax = QB/SO.(Ah/AQ) . ' )
in v@ich Ah/AQ is the slope of the stage-discharge relationship.
b ‘Thg Muskingu&*hodel is equivalent tovequation A.10 if K = 4x/c and X = 0
(Fread 1982). '
. In the Lag and K model (Linsely, Kohler and Paulhus 1949,‘pp. 230-

232) the inflow is first lagged, or delayed, and then attenuated with

the expression

o = [11 +1 -0 - 2:K/8t)] /(1 + 22K/At) c.AaD

This model is linear if the lag and K factors are consﬁant. The lag and
K may vary gith flow level to give an empirical nohlinearwmodel.
Complete dynaﬁic models retain all the terms of equation A.2.
They proQide the most accurate models available, hut must still be
considered somewhacAempirical in nature, since the effects of varying
channel geometry are lumpedvinto an empirical ro&ghness coefficient
(Weinmann and Laurenson 1979). In most practical applications the value
of SO ist several orders of magniture larger than the acceleraﬁion terms
of equation A.l1 (Henderson 1966, p. 364). A reasonable approach to
simplif§ the full Saint-Venant equations is to neglect the acceleration

terms of equation A.2. Various models which are simplified in this‘way
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are called approximate dynamic, diffusion analogy or kinematic wave
models (Weinmann and Laurenson 1979). Some of the similarities among
the approximate routing models can be seen by rearranging the momentum
equation, A.2 into a looped rating curve formnlg. This is acéomplished

by beginning with a flow resistance formula in general form
Q = C:AR™/TT , (A.12)

where C = an empirical resistance coefficient,
.R = the hydraulic rddius, and

)

m = and empirical coefficient.

o

For steady, unifor& flow, Q,» we can substitute So>for Sg¢ to give
. d
= o Ae mo * .
Q, = CrAR/S , | (A.13)

By substituting into equation A.13 for CeA*RT from equation A.12, for Sf

from equation A.2, and ignoring the lateral inflow term we can derive a

general looped rating cufve formula

?

, 13y v v 1 v, 1/2
Q --Qu{Ic_ g;-’s—)-(-‘jg-o—g-'r"s-(;—é’s—e-} ‘ (A.14)
kinematic wave !
(i.e., steady, uniform flow)
diffusion analogy
steady, nonuniform flow .
complete dynamic wave model

(i.e., unsteady, nonuniform flow)

The kinematic aqd diffusion analogy approximations to the full

Saint-Venant eéu;ﬁions>are found by including thé indicated terms Qf

equation A.l14 (Henderson 1966, p. 287, Weinmann and Laurenson 1979).
Approximate dynamic models are based on the continuity equation

expressed as
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+g.%. q © (A9)

and the specified part of equation A.l4. Combining equation A.l5 and

the diffusion analogy terms of equation A.l4 produces the equation for a

<

convective diffusion model

30 . 3q _ . 3%q
+ Cc* = De + c*q (A.16)
3: 3— axz ) .

°

where for regular channels

- Ld
c 5 dy ’ and

D=

2¢B*S
0 e

Thebpatameters c and D control the convective and attenuation
properties, respectively. D is called the diffusion coefficient.,
Equation A.l16, without the lateral inflow term, approximates equation
2.35 for small Froude numbers. Equation A.16 was originally proposed by
Hayami (1951) with constant parameteés ¢ and b. Th}sgis essentially the
" equation solved by the linear state space model developed in this
dissertation. By allowiﬁg the parameters c and D to vary, equation A.l6
describes.a nonlinear model (Price 1973). This is the coﬁcept behind
the nonlinear.state space model. Both Cunge (1969) and Koussis (1976)
_have'demonstrated that with proper choice of parameters, the Muskingum
model is a secoﬁd order approximation of the diffusion equation.

For a kinematic wave model the discharge 1is always a single-yalued

function of depth (i.e., the-steady, uniform discharge) because -from

equation A.l4

Q=G (A.17)

u
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The kinematic wave model does not account for wave attenuation. The
kinematic wave equation can be derived by letting D = O in equation A.l6

and rearranging to give

] -
+g§_. q : (A.18)

=P

L
c

where ¢ is now called the kinematic wave speed.
If ¢ is constant, equation A.l18 describes a linear model. A nonlinear
kinematic wave model arises if c varies.

Linearization of equation A.2 about a reference flow level leads
to several other routing models. A form of the well-known telegraph
equation can be obtained by linearizing the f?iction term, neglecting
the convective acceleration, and assuming zero bottom slope and a

rectangular channel, as

32y 32 3 :
g.yo_‘_’_- —“L+ gCCOOB,_tV_ | (A‘lg)

axz  ae?
where C, is a constant related to the linearized friction‘ten?
(Fread 1982).
-Lighthill and Whitham (1955) and Harley (1966) developed linear
models of the full Saint-Venant equatioﬁs. The complete linear equation

obtained by Harley is

3“q
. -vz‘-—-—--Z'V' - —
| (4.20)
egeg 99 4 9.g..0,39 »
3eg S0 = 2°g G;'ac >

where  q 1s a unit discharge in a unit width channel,

SO is the hottom slope, and



'F

223

the-Saint-Venant equations have been linearized about a
_reference velocity, v, = qy/y, (Harley 1966).
Equation A.20 is a particular case of equation 2.33 for a rectangular
channel with m = 3/2. Because Harley used a Chezy féiction Eector in
fhe derivation of equation A.20, the value of m = 3/2 i3 appropriate for
a rectangular channel. The impulse response function of equation A.20

is

h(x,t) = e:p.x'é(t—xlcl) +

. o ' (A.21)
ne(x/c, - x/CZ)'es I { 2enem} /0 -

where C =v +/g
. 0 g YO ’
C =v =-7/g° .
2 0 8 y0

F’V/V/‘
0 g Yo ’

2~
']

SO'(Z—F)/[2°yO-[F2+F)] ,

[a ]
L}

So-vo-[2+F2)/(2'y0°F2) ,

ss= SO/(2°yO) ,

= [ ] ./ - [ ] ] 2
=SV Y (aer?) < (1or2) (B F)

o= o e .
(¢ x/Cl) (e x/cz]

‘I{'} is a first order Bessel function of the first kind, and
§(¢) 1s the Dirac delta function. ‘ .o

" Equation A.ZO 33 related to the diffusion analogy &édel of Hayami .(Chow
1959, pp. 601-604). As with any lidear model, the response of the
complete linearized model 1s very dependent on the'refgren;e flow level

(Bravo, Harley, Perkins and Eagleson 1970, pp. 35-39).



APPENDIX B

A FORTRAN PROGRAM TO GENERATE HYDROGRAPHS WITH
INVERSE GAUSSIAN PDF SHAPES IN A PRISMATIC CHANNEL

fHIS PROGRAM GENERATES AN INVERSE GAUSSIAN SHAPE HYDROGRAPH
FOR RECTANGULAR (EM=5/3) OR TRIANGULAR (EM=4/3) CHANNELS FOR
SPECIFIED WAVE DISPERSION PROPERTIES

THIS PROGRAM RUNS ON A PRIME 750 COMPUTER USING FORTRAN 77

UNIT 1 IS THE KEYBOARD FOR AN INTERACTIVE TERMINAL

THE VARIABLES ENTERED IN FREE FORMAT ARE:

Qo - THE BASE FLOW LEVEL (CFS)
QP - THE INCREMENTAL FLOW ADDED TO THE BASE FLOW (CFS)
RQFACT - THE REFERENCE FLOW LEVEL, EXPRESSED AS A DECIMAL
FRACTION OF QP
CT. - THE STANDARD DEVIATION OF THE HYDROGRAPH GENERATED
> (HOURS)
BS - IF EM=5/3, TOP 'WIDTH OF THE CHANNEL (FEET)

IF EM=4/3, SIDE SLOPE OF CHANNEL (RISE/RUN)
CM MANNINGS FRICTION COEFFICIENT
M - =0, FOR A RECTANGULAR CHANNEL

=], FOR A TRIANGULAR CEANNEL

SOM - CHANNEL BOTTOM SLOPE (FEET/MILE)
DELHR - TIME INTERVAL BETWEEN ORDINATES GENERATED (HOURS)
- LAST HOUR GENERATED

. LHOUR

aon

. - - . . G T - - - Y  ——— ——— - > Y W G T - -

THE INPUT DATA, INTERMEDIATE VALUES, AND THE OUTPUT
TIMES AND DISCHARGES ARE WRITTEN TO THE FILE DESIGNATED

- - - Y Y Y . G T D WD N R A W G . D G G e e G e - - - -

CHARACTER*80 FILENAME
DIMENSION H(5000)

PRINT *,“ENTER QO,QP,RQFACT,CT,BS,CM,M,SOM,DELKER, LEOUR"

224
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w(l o"@.QP.IQFAﬂ.ﬂ.'sacnuno m.nm. LHOU!
17(Q0.LT.0.)G0 T0 11

RSO=80M/5280.
Ir(X.BQ.1)GO TO S

RECTANGULAR CHANNEL

facnnaan

EM=5,/3.
RQ=(QO+RQFACT*QP)/BS

- RY=(RQ*CM/(1.486*SQRT(RSO)))*w(1 ./IM)
RV=RQ/RY ’ ,
FN=RV/SQRT(32.2*RY)
BRRF=] ,~FN*FN*(] ., ~EM*(2.~-EM))
RD=0.5*RQ/RSO*RRF
GO T0 8

TRIANGULAR CHANNEL

a0 0n

5 EMw=4,/3,
Z=BS
RQ=QO+RQFACT*QP
Ry-((xq*cu*z.**(z./s.))/(x.ase*sqar(RSO)*z))**(x./(2.*£n))
RV=RQ/(Z*RY*RY) » : ’ '
FN=RV/SQRT(32.2*RY)
RRF=] .~FN*FN*(].~EM*(2.-EM))
RD=Q.5*RQ/(RSO*(2,*Z*RY) ) *RRF

o000 o0o

THE FOLLOWING CODE IS COMMON TO BOTH CHANNEL SHAPES
8 CTS=CT*3600.

RRC=EM*RY »

EXO=(((CTS*RRC)**2)*RRC)/(2.*RD) .

CC2=4,*RD ' 0

DXO=EXO*RSO/RY

RTP*((3.*RD)/RRC**2)*(SQRT(1.+(RRC*EXO/(3.*RD))**Z)bl.) .
RHP-Exo/sqar(a.*3.xaxe*ao*arp**a)*sxp(-(Exo—aac*arp)**2/(cc2*arp))
RQP=QP/RHP ' .
CC1=RQP*EX0/SQRT(4.*3.1416*RD)

NSTEPS=LHOUR/DELHR

IF(NSTEPS.GT.5000)NSTEPS=5000

----—--—-—---—-----------—----—--—-------------——————---—-_---------‘—
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CENERATE INVERSE GAUSSIAN SEAPE HYDROGRAPH, H

o000 o0

10

- TIMINC=DELER*3600.
DO 10 I=1,NSTEPS .
TIME=I*TIMINC
H(I)=Q0+(CC1/(TIME**1.5))*EXP(~(EXO-RRC*TIME)#**2/(CC2*TIME))
CONTINUE

STORE RESULTS IN AN OUTPUT FILE

[ N e NN NeNWeXs)

(g}

11

PRINT *,”ENTER FILE NAME FOR DISCHARGES AND TIMES’

READ(1,1)FILENAME

FORMAT(A80)

OPEN(FILE=FILENAME,UNIT=105)
HRITE(IOS,SOO)QO,QP.RQFACT.C‘!‘,BS,CH.EH,SOH,DELHR.LKOU!,
1 RQ,SOM,RSO,RY,RV,FN,RRF,RD,CTS,RRC,

2 EX0,CC2,DX0,RTP,RHP,RQP,CCl

500 FORMAT(°QO=",Gl1.4,”, QP="Gll.4,”, RQFACT=",Gl11.4/

1 °CT=",Gl1.4,”, BS=",Gll.4/
l “CM=",G11.4,”, EM=" ,Gl1.4,”, SOM=",Gll.4/
1 “DELHR=",Gl1.4,°, LHOUR=",6Ill/

1 “RQ=",Gl1.4,”, SOM=~",Gl1.4/

1 °RSO=",Gl1.4,°, RY=",Gll.4/

1 “Rv=",Gl11.4,”, FN=” Gl1.4/

1 “RRF=",Gl11.4,°, RD=",Gll.4/

1 “CTS=",Gl11.4,”, RRC=",Gl1.4/

1 “EX0=",Gl1.4,”, CC2=",Gll,.4/

1 “DXe=",Gll.4,°, RTP=",Gll .4/

1 “RHP=",Gl1.4,”, RQP=",Gll1.4/

1 “cCl=",Gl1.4)

WRITE(105,501 )(H(1),I=1,NSTEPS)

501 FORMAT(8F10.2)

~ STOP
END , -

G
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APP!NDI! c ~
A TORTRAN PROGRAM FOR THE NONLINEAR STATE SPACE IOUTISG MODEL

THIS PROGRAM SIMULATES WITH THE NONLINEAR STATE SPACE MODEL

o

THIS PROGRAM RUNS ON7A: PRIME 7SOTCﬂHPUTEl“UID!l FOlIlAli77.
UNIT 1 IS THE KEYBOARD FOR AN INTERACTIVE TERMINAL

THE.INPUT READ FROM A FILE IN FREE FORMAT IS:

AQ = THE PURE DELAY AT THE REFERENCE FLOW LEVEL

NO - THE NUMBER OF RESERVOIRS AT THE REFERENCE FLOW LEVEL
(THIS MAY BE A NONINTEGER VALUE)

KO - THE PARAMETER K AT THE REFERENCE FLOW LEVEL

Qo - THE REFERENCE FLOW LEVEL

M = THE KINEMATIC WAVE PARAMETER

DT - THE TIME STEP

NSTI- - THE NUMBER OF VALUES OF INFLOW ENTERED

(DT*NSTI IS THE PERIOD SIMULATED)

RHO = THE TIME WEIGHTING FACTOR (RANGE FROM 0 TO 1) -
DEBUG - =0, NO DEBUG PRINTOUT,

=], PRINTOUT FOR EACH RESERVOIR FOR EACH TIME STEP
INFLOW - THE INFLOW TIME SERIES (NSTI VALUES)

THE OUTFLOW FROM THE DOWNSTREAM RESERVOIR AND THE CORRESPONDING
TIMES ARE STORED IN ARRAYS RESOUT AND. TIMOUT, RESPECTIVELY.

. CHARACTER*80 FILENAME
LOGICAL LINEAR
- INTEGER*4 TOTRES,DEBUG
REAL*4 K,M,KO0,NO,KOLOG,LGOLOG, INFLOW, INFBAR,KI, INFLOG,NOLOG
‘ COMMOH/XIX/ F(IOO 100),6(100),x(100) XP(IOO) GU(IOO) K(lOO)
1 TLAG(100) AX(IOO).QLIN(IOO)
COMMON/X2X/INFLOW(5001) ,RESOUT(5001),TIMOUT(5001)

NRD=100

227



OO0

400

401

228

NWR=101
PRINT*, "ENTER INPUT FILE NAME®

READ(1,1)FILENAME
FORMAT(A8C)
OPEN(UNIT=NRD,FILE=FILENAME) . .

PRINT*,“ENTER OUTPUT FILE NAME’ o )

READ(1,1)FPILENAME
OPEN(UNIT=NWR,FILE=FILERAME) .

READ(NRD, *)A0,NO ,K0,Q0,M,DT,NSTI,RHO, ntsuc ’
IF(N0.EQ.0.)GO TO 999

READ(NRD, *) (INFLOW(I),I=1,NSTI)

NMAX=100

LINEAR= FALSE.
IF(M.EQ.1.)LINEAR= ,TRUE,
IF(LINEAR)GO TO 400
TOTLGO=A0+NO/KO
BLAG=(1.-M)/M

P = 2/3 FOR MANNINGS FRICTION FORMULA
R IS A FUNCTION OF M FROM THE PRISMATIC SHAPE FORMULA

P=2./3.
R=(1l.+P-M)/P
BN-(R'I -)/H
BK=(M-2.+R)/M
QOLOG=L0G10(Q0)
KOLOG=L0G10(KO)
AOLOG=LOG10(A0)
NOLOG=LOG10(NO)

LGOLOG=L0OG10(TOTLGO)

INFLOG=LOGI1O(INFLOW(1))
TOTLAG=10.**(BLAG*(INFLOG-QOLCG)+LGCLOG)
N=10.**(BN*(INFLOG-QOLOG)+NOLOG) + 0.5
IF(N.GT.NMAX)N=NMAX

IF(N,LT.1)N=] '
KI=10. **(BK*(INFLOG-QOLOG)#KOLOG)
AI=TOTLAG-NI/K1

GO TO 401 ‘

KI=K0
N=N0+0.5
A=AQ

SO=INFLOW(1)
INFBAR=INFLOW(1)
VOLIN=Q,



O0O00O0

e EeNeNesNe!

c

VOLOUTLR=0,
TOTRES=0

DO 2 1=},N
K(1)=xI
2 X(1)=80
DO 10 J=1 ,NSTI o .

IF(J.GT.]1)INFBAR=( INFLOW(J)+INFLOW(J-1))/2,

IF(LINEAR)GO TO 405

COMPUTE AVERAGE OUTFLOW FROM ALL RESERVOIRS
AS FLOW TO DETERMINE NEW NUMBER OF RESERVOIRS

QOBAR=INFBAR
DO 705 1s1,N

705 QOBAR=QOBAR+X(I)

QOBAR=QOBAR/(N+1)
NOLD=N

o

COMPUTE NEW NUMBER OF RESERVOIRS BASED ON QOBAR

N=10.**(BN*(LOG10(QOBAR)-QOLOG)+NOLOG) + 0.5
IF(N.GT.NMAX)N=NMAX

IF(N.LT.1)N=1 _ ) —_—

TOTRES=TOTRES+N
IF(N.EQ.NOLD)GO TO 730

IF NUMBER OF RESERVOIRS HAS CHANGED -
INTERPOLATE OLD STATES TO GET DISCHARGES FOR NEW
NUMBER OF RESERVOIRS

JJ=0
LCM=N*NOLD.

DO 710 I=1,LCM

IF((I/NOLD)*NOLD LT.1)GO TO 710 .

Il=(I-1)/N + 1 -

I2=(I-1)/NOLD +.1

QLEFT=INFBAR .

IF(I1.GT. I)QLEFT-X(II -1).

QRIGHT=X(Il)

QDIFF=QRIGHT-QLEFT

XLEFT=N*(Il-1)

XRIGHT=N*Il

XWANT=NOLD*I2

JI=Jl+l

QLIN(JJ)'QLEFT+QDIFF*(XWANI~XLEFT)/(XRIGHT-XLEFT)
710 CONTINUE .

=3

229



720

L

230
FILL X ARRAY WITH OUTFLOWS FROM EACH NEW RESERVOIR

DO 720 Is=l,N
x(1)=QLIN(I)

730 ATOT=0.

405

653

654

655
648
673
674

410

DO 3 I=1,N

IF(I.EQ.1)QBAR=( INFBAR+X(1))/2.
IF(1.GT.1)QBAR=(X(I~-1)+X(I))/2.
XXX=L0G10(QBAR)=-QOLOG
AX(1)=10.%*(BLAG*XXX+AOLOG)
K(I)=10.%*(BK*XXX+KOLOG) -
TLAG(I)=10.%*( BLAG*XXX+LGOLOG)
ATOT=ATOT+AX(I)

CONTINUE

ASATOT/N

o

IF(.NOT.LINEAR.OR.J.EQ.1)CALL FILLFG(F,G,NMAX,N,K,DT,RHO,NWR)
CALL LDMULT(F,X{XP.N.I.NHAX.I) |

DO 5 I=1,N
GU(I)=G(I)*INFBAR

CALL ADD(XP,GU,X,N,1,NMAX,1)
RESOUT(J)=X(N)
NDELAY=A/DT+0.5

ITMOUT=J+NDELAY
TIMOUT(J)=ITMOUT*DT

IF(DEBUG.EQ.0)GO TO 410

WRITE(NWR,653)J,A,QOBAR,N, INFBAR,RESOUT(J) ,TIMOUT(J)
FORMAT(® ><><><><><>< TIME STEP=",15,”, A=",F10.3,”, QOBAR=",
1 510.4,‘, N=“,14,”, INFBAR=’,F10.3,”, RESOUT(J)=",
2 F10.4,”, TIMOUT(J)=",F8.2)
WRITE(NWR,654)(X(1),I=1,N)

FORMAT(” DISCHARG=" 10(1x F10. a)/(lex 10(1X,F10.4)))
IF(LINEAR)GO TO 410

WRITE(NWR,655)(K(1),I=1,N) '
FORMAT(” K=“,10(1X,F10.4)/(10X,10(1X,F10.4)))
WRITE(NWR,648)(TLAG(I),I=1,N)

FORMAT(” TLAG=",10(1X,F10.4)/(10X,10(1X,F10.4)))
WRITE(NWR,673)(AX(I) I=1,N)

FORMAT(” 10(1x F10.4)/(10X,10(1X,F10. 4)))
IF(N.NE. NOLD)URITE(NWR 674)(QLIN(L),I=1,N)

FORMAT(” QLIN=",10(1X,F10.4)/(10X, 10(1x F10. 4)))

VOLIN=VOLIN+INFLOW(J)*DT
VOLOUTLR=VOLOUTLR+RESOUT(J)*DT
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10 conTiNUE
C .
AVGRES=FLOAT(TOTRES)/NSTI
WRITE(NWR,657)VOLIN, VOLOUTLI AVGRES

657 FORMAT(® Tﬂ! TOTAL INFLOW =°,Gl17.6/ .
2 ° THE TOTAL OUTFLOW FROM RESERVOIRS =°,Gl172.6/

3 ° THE AVERAGE NUMBER OF RESERVOIRS = “,F8.3) )

c —
999 STOP
END
o
c S
c - .
SUBROUTINE FILLFG(F,G,MAX,N,K,DT,RHO,NWR) R
c : .
c
c
c FILL F AND G MATRICES FOR X(T+l) = F*X(T) + G*U EQUAIIOI
C roa STATES OF DISCEARGE
c
c
c
REAL*4 K
DIMENSION F(MAX,MAX),G(MAX),K(MAX)
c
c FILL MATRIX F(I,J) - I=ROWS,J=COLS
c
GAMMA=] ,-RHO
c
C FILL FROM 1ST TO NTH ROWS
c SINCE K IS CONSTANT FOR A ROW
c
DO 10 I=1,N
SQUIGL=1./K(I)+DT*RHO
IF(I.EQ.N)GO TO 6
L=I+]
c 3 ;
c ZERO TO THE RIGHT OF MAIN DIAGONAL
C .
DO 5. J=L,N
5 F(1,J)=0.
c
c FILL IN VALUE ON MAIN DIAGONAL
C : . .
6 F(I,I)=(1./K(I)-DT*GAMMA)/SQUIGL .
IF(I. EQ.1)GO TO 9 e
c o .
C FILL IN LEFT OFF nxacouas ‘
c .
L=I-l . _
F(I,L)=(F(L,L)*RHO+GAMMA )*DT/SQUIGL : . >
c

c FILL TO THE LEFT OF LEFT OFF DIAGONAL



(2]

anon

10

232

FILL FROM RIGHT TO LEFT

DO 8 JJ=2,L

Jol=JJ
F(1,J)=F(L,J)*DT*RHO/SQUICL
CONTINUE

FILL IN G VECTOR VALUE : .

IF(I.EQ.1)G(1)=DT/SQUIGL
IF(I.GT.1)G(I)=G(L)*DT*RHO/SQUIGL
CONTINUE

RETURN
END

s -

(2 2]

SUBROUTINE LDMULT(A,B,C,L,M,LDIM,MDINM) .

MULTIPLY TWO LOWER DIAGIONAL MATRICES

coooo

10
20

DIMENSION A(LDIM,LDIM),B(LDIM,MDIM),C(LDIM,MDIM)
DO 20 I=},L

DO 20 J=] .M

TEMP=0.

DO 10 K=1,I

TEMP=TEMP+A(I,K)*B(K,J)

C(I,J)=TEMP

RETURN
END

OO0

OO0

10

SUBROUTINE ADD(A,B,C,N,M,NDIM,MDINM)

ADD TWO MATRICES

DIMENSION A(NDIM,MDIM),B(NDIM,MDIM),C(NDIM,MDIM)
DO 10 I=]1,N

DO 10 J=1 ,M. ‘

C(I,J)=A(1,J)+B(1,J)

~ RETURN

END
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