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STOCHASTIC DECOMPOSITION SCHEMES FOR THE REAL-TIME
FORECASTING OF RIVER FLOWS IN A LARGE RIVER SYSTEM

Konstantine P. Georgakakos
National Research Council
National Oceanic and Atmospheric Administation
Research Associate

1. INTRODUCTION

In recent years, modern estimation theory techniques have been suc-
cessfully utilized in the real-time forecasting of river flows for headwater
basins (no upstream inflows). Second moment estimators of the Kalman type
(Gelb, 1974) have been used together with conceptual models that simulate
catchment processes (Kitanidis and Bras, 1980a, 1980b) and precipitation-
catchment processes (Georgakakos and Bras, 1982).

Straightforward application of the above mentioned stochastic models to
large river systems with several tributary basins creates serious computa-
tional problems. In such a case, one would formulate a composite state
vector whose components are the states of the precipitation, soil, and chan-
nel processes in each tributary basin. (See Appendix C in Georgakakos and
Bras, 1982, for the relevant formulation.) However, application of estima-
tion theory techniques that treat the system as a whole can be infeasible
when the number of tributary basins grows large. This is primarily due to
the number of computations related to the propagation and updating of the
system covariance matrix, which provides a measure of the error in the state
estimates in real time. If each tributary basin requires a state vector of
order n, N basins require a composite state vector of order nxN. The
covariance matrix is then a (nxN) by (nxN) square matrix, while a filtering
procedure of the Kalman type requires computations that increase as (an)3.
With n of the order of 10, a value of N equal to 10 requires computations of
the order of 107, which may be impracticable especially when microprocessors
are used or when very short forecast lead times are required.

Typically, five to ten tributary basins have been aggregated to form a
forecast group during preliminary testing of the National Weather Service
River Forecast System (NWSRFS) at the Tulsa and Minneapolis River Forecast
Centers (Smith, 1983). Work on the Potomac River has segmented that river
into 24 tributary basins (Smith, Sheer, and Schaake, 1982).

It is the purpose of this note to indicate possible solutions to the
presented problem that are computationally efficient and preserve the useful
properties of the modern estimation theory techniques.

2. STOCHASTIC DECOMPOSITION

It is rather clear that in the case of large river networks there is a
trade—off between the computational efficiency of the algorithms used and
the accuracy of the forecasts. Therefore, to gain efficiency one has to



simplify the models used. Since the cause of the computational problem is
the set of computations related to the covariance matrix, it is only natural
to concentrate on ways to simplify those.

There appear to be three main classes of simplification procedures.
(See Georgakakos, Restrepo—-Posada, and Bras, 1980, for a detailed review.)

1) Avoiding the covariance computations in real time as is the case
with prespecified filter gains.

2) Filtering only part of the state vector. (In general, the states
comprising the filtered part of the state vector are different for
different time steps.)

3) Partitioning the state covariance matrix by omitting some of the
state cross—correlations, thus reducing the original high-
dimensional problem to several ones of low dimensionality.

In all the above simplification procedures, the state mean propagation
is done in the same way as for the composite system. It is the set of
covariance computations that is simplified.

Due to the uncertainty of real world data and the varying conditions
for each river basin, one cannot assess a priori which strategy is best. In
fact, in cases where one can afford the cost of comparison, one should
compare each simplification procedure to the exact solution in terms of
accuracy. Then choose the one that, while meeting the cost restrictions,
has the highest accuracy. However, some general comments can be made a
priori and several problem (research) areas can be identified for each class
of simplification.

2.1 A Priori Computed Filter Gain

A priori specification of the filter gain matrix offers considerable
real time operational computational savings (perhaps the most compared to
the other two classes). However, this line of approach has several problems
associated with it. The main one concerns how to choose the function of
time that will represent the filter gain. Whatever method is chosen, one
cannot avoid running the complex system with the filter in order to deter—
mine the gain as a function of time. This can be quite expensive, if
possible at all.

A serious problem, characteristic of this class of simplifications in
river flow forecasting, is the fact that the observations of the input
variables and of the output variables of the system have errors that are
time varying and dependent on the magnitude of the observation. Thus,
discharge measurements tend to be more accurate in cases of low base-flow
activity. This, and the fact that the gain is a function of those errors,
produce erratic time-traces of filter gain which are difficult to approxi-
mate by smooth functions of time. Figures 1-10 present time-traces of the
gains for 6-hr time steps corresponding to the ten states of the Georgakakos
and Bras (1982) model for the mean areal precipitation output (thin dashed
line) and for the outflow discharge (thick solid line). The gain time-
traces are for the month of July, 1959, with 6-hr data from the Bird Creek
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thick solid line shows mean areal precipitation output, and the thin

dashed line shows outflow discharge.
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basin (2344 square kilometers). The model predictions of the discharge
outflow for July, 1959, in mm/6 hrs are represented by a thin dashed line in
Figure 11. The corresponding observations are represented by a thick solid
line. Characteristic of Figures 1-10 is the fact that the highly irregular
gain time—traces are radically different for different states.

2.2 Filtering Part of the State Vector

Sims (1974) developed an algorithm for estimating a portion of the
state of a linear dynamical system. Based on this idea, one could envision
a filter that processes only part of the state vector in real time (the
temporarily active part) running together with a decision algorithm which
specifies the part of the state vector to be filtered at each time step.

The challenging problem here is to develop the decision algorithm based
on past and current data. For example, one can base the decision on high or
low past forecasted rainfall activity in each tributary basin; on the
relative saturation of the tension water elements; or on the response time
of the different basins. Runs of the complete model which will produce the
gain time-traces (as in Figures 1-10) can give an indication as to what
states are filtered for which types of hydrometeorological conditions.

Along the same lines, the sensitivity analysis suggested in Gelbd (1974) will
prove useful in establishing the criteria for the decision algorithm.

Due to the operational nature of the real time forecasting procedures,
the methodology that accompanies this type of simplification should be able
to accommodate the full spectrum of possible hydrometeorological situations.
Since the decision algorithm is likely to depend on the data available,
comparisons with the full complex model running together with the filcer for
all types of hydrometeorological regimes are indispensible in this case too.

2.3 Particioning of the State Covariance Matrix

In contrast to the above two classes, this class of simplification can
give, a priori, good simplified models that do not need a great number of
runs to be calibrated. The idea is to omit the elements of the covariance
matrix that are likely to be insignificant due to the weak coupling of the
corresponding states.

Since the precipitation process is the one that fills the soil elements
of the different tributary basins, it is natural to suppose that the cor-
relation among the soil elements of different basins is due to the spatial
correlation of the precipitation input.

Once this is accepted, the model of Georgakakos and Bras (1982) can be
used to obtain decomposition algorithms, since it integrates:
- A precipitation process state.

- Soil states as they are represented in the soil moisture accounting
scheme of the National Weather Service River Forecast System (model
description in Peck, 1976).

- Channel states of the nonlinear channel routing model of
Georgakakos and Bras (1980).

~14-



The model is physically based and uses, as input, estimates of surface
mean areal temperature, mean areal potential evapotranspiration, pressure,
and dew-point temperature for each basin. It gives forecasts of mean areal
precipitation over a basin and of the outflow discharge. The model fore-
casts are compared to corresponding observations in a filtering framework in
order to update the state estimates in real time. The data-base used is the
typical data-base available operationally for time intervals down to a few
hours.

With this approach, the correlation between the precipitation model
states in different basins is preserved (during the predict-update cycle in
the filtering procedure); the soil and channel states of different basins in
the covariance matrix are completely decoupled; the influence of the
precipitation spatial correlation structure is preserved; and, at the same
time, each tributary basin is processed separately.

Based on this idea, given that the precipitation ?odsl has one state,
+N

the ngmber of computations for N basins increases as n ,» instead of
(nxN)~ for the full model.

The meteorological data can be obtained by linear interpolation from
the nearest meteorological stations or the nearest forecast nodes of the
Limited-Area Fine Mesh model which runs operationally (NOAA-NMC, 1981).

This is due to the high linear correlation of temperature, pressure and dew=-
point. The data required for each tributary basin are:

1) Forecasts of mean areal temperature, pressure, and dew-point
temperature.

2) Observations of mean areal precipitation.

3) Forecasts of mean areal potential evapotranspiration.

4) Observations of outflow discharge.

In cases where areal precipitation or outflow discharge data are not
available for some basins in the river system, these basins must be combined
with the nearest ones that have data. This part of the river system is thus
considered as a whole.

The stochastic decomposition algorithm (presented in Table 1) assumes
that the outflow discharge observations in all tributary basins are of the
same quality, therefore there is nothing to be gained by updating the model
states corresponding to a certain basin by using discharge observations at
the outlet of another basin. This implies a diagonal river—system discharge
sub-matrix of the observations error covariance matrix. In additiom, it
assumes that there is little to be gained by updating the soil-channel part
of the model from the mean areal precipitation observations.

-15-



STEP1L:

STEP2:

STEP3:

STEP4:

STEPS:

Table 1.--A stochastic decomposition algorithm

Starting from the upstream tributary basins, forecast the state mean
and covariance for each basin using the Extended Kalman Filter
(Gelb, 1974) prediction equations and the precipitation-soil-channel
model of Georgakakos and Bras (1982).

For basins with upstream inflow, the inflow is treated as an
uncorrelated (in time) random variable of mean and covariance
predicted from the filter when it was run for the upstream basin
whose outflow is the inflow under consideration.

Form an additional state vector from only the precipitation states
corresponding to all tributary basins. Since the precipitation
model of Georgakakos and Bras 1s linear in its state, forecast only
the covariance matrix of this new state vector using the filter
covariance prediction equations.

For the precipitation states mean predicted in STEPl and the
precipitation states covariance predicted in STEP2, use the filter
update equations for the precipitation models state vector of

STEP2. Thus, obtain a new estimate of the precipitation model state
mean and covariance across the observation vector consisting of the
observations of mean areal precipitation for all basins.

Substitute the mean and variance of each precipitation state of
STEP3 for the forecasted mean and variance of each precipitation
state in the state mean vector and state covariance matrix of
STEPl. 1In addition, change the cross—covariance elements of the
state covarlance matrix that correspond to the precipitation state,
in such a way that the correlatiou forecasted in STEPl and the
variance of the precipitation state updated in STEP3 are preserved.
The above changes are done for each basin.

Obtain new estimates of the mean and covariance of the state vector
of the precipitation-soil-channel model for each basin, using the
filter equations to update across the basin outflow discharge
observation. This completes the predict-update cycle for one
forecast period. Starting from STEPl, repeat the above sequence of
steps for the next forecast period.

-16-



Research areas within the framework given are:

1) The determination of the filter parameters for each tributary basin
and for the stack of precipitation models of STEP3 in the
algorithm. In particular, the initial state covariance matrix, the
system noise covariance parameter matrix, and the observations
error covariance matrix.

2) The verification of the algorithm assumptions by testing them in
real world applications.

Note that the first research area is also an important one for the full
stochastic model of the river system. Note also that there are no
parameters in the algorithm that need to be estimated through comparison of
the decomposed model forecasts with the forecasts of the composite sto—
chastic model. Therefore, for cases in which one cannot afford to run the
full model even for comparison purposes, the proposed algorithm can be used.

3. SUMMARY-CONCLUSTONS

This technical note has examined the problem of the efficient use of
modern estimation theory techniques for the real time forecasting of river
flows in large river systems of several tributary basins. Various sto-
chastic decomposition techniques were discussed in terms of computational
efficiency and suitability for operational use. A stochastic decomposition
algorithm based on the partition of the state covariance matrix in real time
was proposed as the least dependent, for the calibration of its parameters,
on expensive comparison runs with the full stochastic model.
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