APPLICABILITY CRITERIA FOR KINEMATIC AND DIFFUSION ROUTING MODELS!

INTRODUCTION

Many simplified flood routing models may be categorized as either
kinematic-type or diffusion-type models. The Muskingum Model (McCarthy,
1938), Reservoir Routing Model (Goodrich, 1931), SSARR Model (Rockwood, 1958),
Kinematic Model (Lighthill and Whitham, 1955), and the SWMM Model (Huber
et al., 1975) are kinematic-type models. The Muskingum—Cunge Model (Cunge,
1969) is a diffusion-type model. These models are limited to applications
where the inertial effects are insignificant and, in the case of the
kinematic-type models, the water surface slope {8 constant with time and is
closely approximated by the channel bottom slope.

This paper develops criteria to quantify the acceptable range of applica-
tion for kinematic and diffusion models. The criteria are developed by esti-
mating the magnitude of the terms i{n the conservation of momentum equation
which are neglected by the kinematic and diffusion models. The omitted terms
are normalized with the channel hottom slope; this ratio 1is expressed with
hydraulic variables (channel bottom slope, peak discharge, Manning n, time of
rise of inflow hydrograph, cross-section parameters) whose values are readily
available prior to routing. The criteria are applicable for a wide range of
practical channel shapes and typical inflow hydrograph shapes.

Ponce et al. (1978) also presented criteria for selecting appropriate
applications for kinematic and diffusion models. Their results, which were
obtained for a sinusoidal shaped wave in a wide channel by using a linear
analysis technique, are compared with those developed herein. Realistic
hydrograph shape, cross-section shape, nonlinearity and non-prismatic channel
characteristics are considered in the approach presented in this paper.

Kinematic and diffusion models are also limited to applications where
insignificant backwater effects exist and where wave propagation is in the

downstream flow direction only. No attempt is made herein to quantify these
restrictions.

All notation is defined in Appendix A--Notation.
THEORETICAL DEVELOPMENT

The conservation of momentum of one-dimensional unsteady flow is
described by the following:

av/dt + V 3V/3x + g(3y/3x - SO +8) =0 (1)
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Solving Eq. (1) for the friction slope (S) and then dividing through by the
channel bottom slope (S,), one obtains:

(1) (2) (3)
S dy/3x _ V dV/ax _ av/at
5173 Z S %S (2)
o [o] (o] o

The conservation of mass of one—~dimensional unsteady flow is described by
the following:

AJ3V/3x + V 3A/3x + B 3y/3t = 0 (3)
Also, the term (3A/3x) may be approximated as:
3A/3x = B 3y/dx + y 3B/3x (4)
and the hydraulic depth (D) is by definitionm,
D = A/B (5)
Now, solving Eq. (3) for 3V/3x, the following is obtained:
3V/3x = -V/A 3A/3x - B/A 3y/3t &6)

Upon substituting Eqs. (4) and (5) into Eq. (6) and then multiplying through
by V, the following expression for the term (V 3v/3x) is obtained:

V 3V/3x = -V2/D 3y/ax - V2/B 3B/3x - V/D 3y/d¢ (7)
Using the kinematic approximation for 3y/dx (Henderson, 1966), i.e.,
3y/3x = -1/c 3y/3¢ (8)

where ¢ is the kinematic wave speed which can be evaluated using the
following:

¢ = KV (9)

in which X is a cross—-sectional shape factor, 7/6 < K< 5/3. Hence, by
substituting Eq. (9) into Egq. (8), the expression for 3y/3x becomes:

dy/3x = =[y/dt/(RV) (10)

Returning now to Eq. (2), the following is obtained by substituting Eqs.
(7) and (10) into Eq. (2):

1y  (2) (3)
S 3y/3t 1 V2 _ v _ !
.S.:= 1+ &5 5 +—3 [E—SB/BX + (1-1/K) 53y/3t - 3Vfat] (1)
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let the time derivatives be represented by the following expressions:

dy/3t = M yp/T (12)
3v/3t = M Vp/T (13)

in which y. is the peak depth, Vp is the peak velocity, and M is a multiplier
which adjusts the straight line approximation for the rising limb of the
hydrograph to that maximum slope associated with the rising limb of a hydro—
graph having a gamma distribution. An expression for M is developed by dif-
ferentiating the gamma function, evaluating this expression at t = 2T/3 and
then forming a ratio of the evaluated expression to the straight line approxi-
mation. (See Appendix B for the derivation of M). The resulting expression
for M is:

W = a2 (2/1H* &3 (14)
where! a = 1/(Tg/'1'r -1 (15)

in which T. is the time (hr.) from beginning of rise to the center of gravity
of the hydPograph, and T, is the time (hr.) from the beginning of rise to the
peak of the hydrograph. The minimum value for M is one when the rising 1limb
is a straight line; and its maximum value of about 2.5 occurs when T /Tr is
1.09 and t = 2Tr/3' Thus, 1 € M < 2.5 represents the range for the multiplier
parameter (M).

It is more convenient if the time of rise (Tr) is expressed in hrs.;
therefore, Eqs. (12-13) become:

1]

dy/ot = My /(3600 T) (16)

av/at

i

M Vp/(3600 Tr) | a7
in which Tr is the time of rise (hr.) of the hydrograph.

The velocity (V) in the preceding equations is assumed to be the velocity
occurring when t = 2Tr/3’ i.00,

ve=2 VP/3 (18)

since the velocity at the beginning of rise i3 assumed negligible compared
to V.. Upon substituting Egs. (16-18) into Eq. (11) and simplifying, the
following is obtained:

(1) (2) (3)
s 0.000417 My 0.00000863 ¥ V, 2y,
= ltsxv* 3 (8 + (1-1/K) =5 - 1] (1D
o r o P r o
1600 T_ V_ _
where: B = T Br P AB/Ax (20)



REPRESENTATION OF HYDRAULIC PARAMETERS

In order to evaluate the terms in Eq. (19) before routing an inflow
hydrograph, it is necessary to express the parameters (¥.» Vp, R, D, B) in
terms of parameters which are known a priori. To accompgish this, as well
as account for the effect of cross—sectional shape, the channel geometry is
approximated as:

B =k y® 21)
_—

A= ——z—ml (22)

D = A/B = y/(m+l) (23)

in which k and m are fitted parameters for the observed variation of B with
¥. Scaling is accomplished via k, and m accounts for the shape. Rectangular
(wide channel), parabolic, and triangular shaped channels have m values of O,
0.5, and 1.0, respectively. A value ¢f m > l represents an expanding v -shape
section in which the width (B) increases at a nonlinear rate with depth (y).
This shape is appropriate for many natural cross sections composed of a
relatively narrow in-bank channel and a rather wide over-bank (floodplain) -
section.

Using the Manning equation, the unit-width peak discharge (qp) is given
by: ‘ :

- 1/2 _5/3
qp 1.49/n S0 Dp

Then, substituting Eq. (23) into Eq. (24) and solving for Voo the following is
obtained:

(24)

0.6
Vy = (qp/a) (25)

5/3

vhere: a = 1.49 Si/zi[n (mr1)°73] (26)

Also, the unit-width discharge (qp) can be expressed as QD/B or
Q 5/ (3m+5)

q, =2 (f—a—) (27)

in which Qp is the peak discharge of the inflow hydrograph.

Using the Manning equation, the peak velocity (VD) can be expressed as:
1/2 D2/3
o P

Substituting peak values for V and D (using Eq. (23) for the latter) results
in the following:

VD = 1.49/n S (28)

1/2
)

2/3

V = 1.49/n S
P

[yp/(m+l)] (29)



Now, substituting Eq. (25) into Eq. (29) yields an expression for Vp:

0.6 0.4
V = 1 (30)
P (m+l) a a,
The ratio (Vp/yp) can be obtained from Eq. (25) and (30). Thus,
1.2, 0.2
v = 1 ¢ (31
p/Yp (m+l) a /qp
The cross—-sectional factor (K) in Eq. (9) is given by the following:
K = 5/3 - 2/3 dB/dy A/B? (32)

Upon substituting Eqs. (21-22) into Eq. (32) and simplifying, the following is
obtained:

K= (3m+5)/[3(m+1) ] (33)
The ratio [2 yp/(3D)] in Eq. (19) may be obtained as follows:

2y
D
29,/ O0) = 3075 75 TGy

= mt] (34)

Then, the term in brackets of Eq. (19) can be evaluated using Egs. (33),
and (34). Thus,

B8 + (1-1/K) 2 yp/(BD) -1 =8 - (m3)/(3m+5) (35)

The ratio (VD/B) is obtained using Eqs. (21) and (30). Thus,

0.6(m+1)/(k qO.ém—O.&)
P

Then, using Eq. (36), the nonprismatic term (8), Eq. (20), can be expressed as
follows:

vp/3.= 1.5 (m+1)a (36)

1600 T_ 1.5%m+1) a0+0(mD)

J0-6m = 0.0 AB/Ax (37)

B =

Mk

in which AB/Ax is the average variation of the width (B) along the routing
reach (Ax); this is the nonprismatic characteristic of the routing reach.

DIFFUSION ROUTING MODELS

Diffusion-type routing models are based on the following approximation
for S:

§=5_ - dy/3x (38)

Therefore, only the inertial effect represented by the third (3) term in
Eqs. (2), (11), and (19) is omitted. The error due to the omission of this
term is denoted as Er’ expressed as a decimal fraction. The following
inequality expresses the relationship that must exist if the omitted term
should not cause a relative error in the conservation of momentum equation
greater than Er:



0.00000863 M V
3 2 g + (1-1/K)2 yp/(su) - 1] (39)
r [s]

E_>
T

Using Eqs. (30) and (35), Eq. (39) can be expressed as follows:

0.000011 M 2%
E > D |8 - (2+3)/(3m+5)| (40)
r T S0.7 n0.6

r o

Replacing E,. with E/100, in which E is in percent, Eq. (40) can be rearranged
as follows:

0.7 0.6
rSO n
57— > 0-0011/E (41)
Me' q
P
where: &' = |8 - (m3)/(3m+S5)] (42)

In Eq. (42), E is a quantitative index related to the maximum error (percent)
that is tolerated when the inequality is satisifed. When the channel is pris-
matic (AB/Ax = 0) with rectangular cross—section (m=0) and assuming M = 2.5,
Eq. (41) becomes: .

s0.7 n0.6

r O
0.4 - > 0.0017/E (43)

%
KINEMATIC ROUTING MODELS

T

Kinematic~type routing models are based on the assumption of a single~-
valued depth-discharge relation, i.e.,

3A/3Q = dA/dQ = l/c (44)

Eq. (44) implies that the friction slope (S) is constant and equal to the
bottom slope, i.e.,

S = So (45)

or S/S =1 (46)
o

Therefore, kinematic models omit the second (2) and third (3) terms of
Egs. (2), (11), and (19). The error due to the omission of these terms is
denoted as Er exprassed as a decimal fraction. The following inequality
expresses the relationship that must exist if the omitted terms should not
cause a relative error of conservation of momentum greater than Er:

0.000417 M Yy 0.00000863 M V

P - -
Er > TSRV + =3 8 + (1-1/K) 2 yp/(3D) 1] (&7)
r o p r o




Substituting Eqs. (30), (31), (33), (35), and (42) into Eq. (47), the
following is obtained:

0.000777 ¥ ¢°+2 al*? (w1)?  0.000011 ¥ % 8¢
p p
L 1.6 * 5.7 0.6 (48)
T T s-°° (3m+5) T s°*' v
r O r [s]

Replacing Er with E/100, in which E is in percent, Eq. (48) can be rearranged
in the following form:

0.2 1.2

0.0777 M q°°% al*2 & (1+41)
E > P e (49)
T sl
r o]
where: @ = (m+1)2/(3mS) (50)
I = 0.014 sg‘g qg'z 81/ al® (51)

The parameter (I) acounts for the term (3) in Eq. (47). It represents less
than about 177 of term (2) for flows with Froude numbers (F) less than 0.5 and
only represents 4% of term (2) when the Froude number is 0.25. The parameter
(I) can also be expressed in terms of the Froude number (F), i.e., .

I = 0.22 F2 ¢'/8,

Rearranging Eq. (49), the following criterion is obtained for kinematic

models:
31.6

r o
02 1.7 > 0-078/E (52)
M (1+I) ¢ qp n

If the inequality in Eq. (52) is satisfied, the maximum error that will
be incurred using a kinematic model is E (percent). If the channel is pris-
matic, rectangular, M is assumed to be 2.5, and the Froude number is about 0.5
such that I may be approximated as 0.15, Eq. (52) reduces to the following:

T Sl.é

r (0]
0.7 _1.2 > 0.045/E (53)

qP
COMPARISON WITH CRITERIA OF PONCE AND SIMONS

Ponce and Simons (1977) developed an analytical solution to a linearized
version of the unsteady flow equations, Eqs. (1) and (3), for a sinusoidal
shaped wave propagating in a wide channel. Ponce et al. (1978) used this
information to define the limits of applicability of the kinematic and
diffusion type models.

Kinematic Criterion. In the case of kinematic models, they presented the
following criterion for routing errors at the 57 level:

T, SV
———Efl-il > 171 (54)
o




in which Tp is the duration (sec.) of the inflow hydrograph. Using Eqs. (23),
and (30) and the approximation that Tp = (2)(3600)T., Eq. (54) may be
rewritten in the following equivalent form:

r sleé
orz 01 5 > 0.014 (55)
qp. n L]

For a wide channel (m = 0), with M taken to be about l.7 for a sinusoidal
shaped hydrograph, I = 0.15, and E = 5, Eq. (52) becomes:

sl
SO > 0.006 (56)
qp n

The left-hand-side of Eq. (56) is identical with that of Eq. (55), although
the right-hand-side of Eq. (55) is about two times that of Eq. (56).

Diffusion Criterion. In the case of diffusion models, Ponce et al. (1978)
presented the following criterion:

Ty S, /g/D0 > 30 (57)

Substituting Eqs. (23) and (31) into Eq. (57) allows it to be rewritten in the
following equivalent form:

S1.15

Lo ___> 0.0003 . (58)

(qp n)0.3

Eq. (58) can be rewritten in the following form:
S0.7 n0.6

r o : =
qO.& > 0.0003 £ (59)

P
where f varies from about 0.5 to l.5 depending on a typical range of values

for S;O'S and n.

T

Eq. (41), with E = 5, M = 1.7, I = 0.15, and m = 0, becomes:

T SO.? n0.6

L3 > 0.00024 (60)

o)
0.4
qp
Eqs. (59) and (60) are identical, although the right-hand-side of Eq. (59) can
be from one-half to about two times that of Eq. (60). Thus, it is considered
that this approach is in general agreement with that of Ponce et al. (1978)
while being able to account for channel shape, more realistic shaped
hydrographs than the sinusoidal approximation, and non—prismatic channel
geometry.



SENSITIVITY OF CRITERIA

The kinematic criterion, Eq. (52), and diffusion criterion, Eq. (41), may
be expressed in the following common form:

y
< 61)
r o
where: Y =Y, = 0.08 M (1+) 9 qg'z n1'2/32'6 (kinematic) (62)
Yy = Yd = 0.001 M &' qg’4 SS'S/nO'6 (diffusion) (63)

Eq. (60) is shown in Fig. ! in which E is plotted against (TrSo) for various
values of Y.

If M 1is set at 2.5 (a conservative value for natural hydrographs), the
practical range of values for dps T Sy» and m result in the following ranges
for Yy and Yd:

0.01 < Y <10 (64)

0.001 < Yd < 0.1 (65)
The diffusion and kinematic regions are denoted in Fig. 1 where it may be
noted that the error (E) is smaller for a much larger range of the value (Tr So)
for the range of possible values of Y .. Therefore, the diffusion models have
a wider range of acceptable application than the kinematic models. Also, E is
strongly dependent on (Tr So), while Y is weakly dependent on So and qp; Y is
strongly dependent upon m, M, and n.

Sensitivity characteristics of the criteria are apparent from Figs. 2 and
3 which show the kinematic and diffusion criteria, respectively, as a function
of the dominant factors (So and Tr). Also, the variation of S0 and T_ for a
fixed E value of 5 percent is shown in the inset of each figure. Notice how
much greater the allowable T, must be for the kinematic criterion compared
with the allowable Tr for the diffusion criterion, particularly at the mild
slopes. The kinematic criteria is strongly a function of the channel slope.

SUMMARY AND CONCLUSIONS

Index criteria for the applicability of kinematic and diffusion type
routing models are developed from an analysis of the magnitude of the
normalized errors in the momentum equation due to omission of certain terms.
The criteria are easily evaluated from the parameters (T., S,, n, aps m) which
are available prior to the routing computations.

The criteria are:

Sl.6

L OO W) > 0.078/E (kinematic models) (66)
M (1+1) ¢ qp' n’

T
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S0.7 n0.6

T
r.o > 0.001/E (diffusion models) (67)
GRA
Mé' q
P
where: q_ =a [Q/(k ay]3/ (Gm+3) (68)
a = 1.49 S;/Z/In(m+1)5/3] (69)
M o= a/2 (2/3) /3 1< M< 2.5 (70)
a = 1/(T,/T, -1 1.025 < T /T, < 1.45 (71)
I = 0.0l4 sg‘g qg'z 2'/¢ ol (72)
8 = (mr1)2/ (3m+S) (73)
' = |8 - (w+3)/(3m+5)| (74)
1.5% 1600 (m+1) T_ a0°0C™D)
8 = AB/Ax . (75)
K M q0.6m—0.4

P

in which AB/Ax is a measure of the average nonprismatic characteristic of the
channel reach. The applicability criteria include the effects of channel
shape, non-prismatic geometry, realistic hydrograph shape, channel slope,
roughness, and peak discharge.

Sensitivity studies show that the diffusion criteria permits a much
larger range of channel characteristics and inflow hydrographs (characterized
by the time of rise) to be treated with diffusion-type models than with
kinematic models for the same level of error index (E).
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APPENDIX A

Notation

cross-sectional area, L2

hydraulic parameter defined by Egs. (26), (68)

wetted top width, L

kinematic wave speed, L/T

hydraulic depth, L

hydraulic depth in Eq. (54), L

hydraulic depth associated with peak flow, L

total derivative

relative (normalized) error in momentum equation, percent

Relative (normalized) error in momentum equation, dimensionless ratio

exponential function

Froude number, dimensionless

acceleration due to gravity

effect on error due to omission of inertial terms, defined by Egqs. (5), (71)

cross-section factor for kinematic wave speed, defined by Egqs. (32), (33)

fitted scale parameter for cross section, dimensionless

fitted shape parameter for cross section, dimensionless

multiplier parameter to correct straight—line approximation of temporal
derivatives, defined by Egqs. (14), (70)

Manning roughness coefficient

subscript denoting that it {3 associated with the peak flow

peak.discharge, L”/T

peak unit-width discharge, LZ/T, defined by Egqs. (27), (68)

friction slope, dimensionless

channel bottom slope, dimensionless

time to peak of inflow hydrograph, T (sec.)

time of duration of inflow hydrograph, T (sec.)

time to center of gravity of inflow hydrograph, T (hr.)

time to peak of inflow hydrograph, T (hr.)

time, T (sec.)

velocity, L/T

velocity associated with peak flow, L/T, defined by Eas. (28), (29), (30)

distance along the channel axis, L

flow depth, L

flow depth associated with peak flow, L, defined by Eq. (25)

hydrograph parameter of gamma function

hydraulic parameter for nonprismatic channel effects, defined by Egs.
(373, (75)

incremental

hydraulic parameter used in Eq. (60) and defined by Egs. (62) and (63)

hydraulic parameter for diffusion criterion, defined by Eq. (63)

hydraulic parameter for kinematic criterion, defined by Eq. (62)

parameter associated with cross-section shape, defined by Eqs. (50) (73)

parameter assoclated with cross—section shape and 8, defined by Eqs.
(42), (7%

partial derivative



APPENDIX B

Derivation of Parameter (M)

The assumption that 3y/3t = y /T is suitable when the rising limb of the
inflow hydrograph is a straight line. This occurs for most dam—break hydro-
graphs and reservoir releases agssociated with hydropower. However, runoff-
generated hydrographs do not tend to have a gtraight-1line rising limb but
rather have more of an J—shape. The three-parameter gamma function can be
used to describe a hydrograph having such a rising limb. Thus,

a a(l-t/Tr)

Q(t) = Qp (t/Tr) e (B-1)

where: a = 1/(Tg/'1'r - 1)

in which T, is the time to center of gravity of the hydrograph, Tr is the time
to the pea§ of the hydrograph, t is time, and Qp is the peak discharge.

If Eq. (B-1) is differentiated with respect to time, the following is
obtained:

. a 1-(:/‘1‘r

do a a(l-t/T )
I (8 = T Q, (*f:) ("Ef-f: e r (B-2)

Now, Eq. (B-2) may be evaluated at any given time (t) to determine the instan—
taneous slope (dQ/dt). Selecting the time (t = ZTr/3) and substituting this
into Eq. (B=2) gives:

49 (0y - . @ @/3 -
it (t) ZTr/3) Tr Qp (2/3)" (1/2) e (B=3)
Evaluating the slope at t = 2Tr/3 is appropriate for hydrographs with
1.025 < T_/T. < 1.45.
g/ r
let M be defined as follows:
w = d0/dt (B=4)

o /T,
Thus, M 1s the ratio of the instantaneous slope of the hydrograph to the
straight line approximation (QD/Tr)' Therefore, dQ/dt may be obhtained by
multiplying (Q,/T.) by M.

Substitution of Ea. (B=3) into Eq. (B-4) produces the following general
expression for M:

M =a/2 (2/3)“ eo'/3 (B-5)

where M applies for points located at time (t = ZTr/3) on the rising limb of
the inflow hydrograph which is approximated by a gamma function.
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