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ABSTRACT: Dynamic flood routing models based on an implicit nonlinear finite
difference solution of the Saint-Venant equations have been extended camputa—
tionally to allow a larger range of practical applications and greater relia-
bility and ease of use. This paper presents a brief description of the follow-
ing computational developments: (a) a computationally efficient algorittm for
treating transient flows in chamel networks, (b) convenient selection of vari-
ous internal boundary conditions to simulate rapidly varied flows at dams,
bridges, etc., (c) an algorithm for similating the effects of levee overtopping,
(d) an algorithm for stable computation of mixed (suberitical-supercritical)
unsteady flow, (e) an automatic computational stability enhancement via a tempo-
rary reductifn in time step size or increase in the 6 weighting factor of the
finite difference approximating equations, and (f) an algorithm to create addi-
tional cross sections via linear interpolation between two adjacent sections.

Introduction

During the last few years, operational dynamic flood routing models
based on a weighted, four-point, implicit, nonlinear finite difference
solution of the one-dimensional unsteady flow (Saint-Venant) equatiomns
have been increasingly used to analyze dam-break flooding and other
transient flows in mild-sloping river systems affected by tides, back-
water and man-made structures (dams, bridges—embankments, levees, flow
bypasses, etc.). This paper presents a brief description of several
practical concepts and algorithms which have been developed to signifi-
cantly extend the range, reliability, and ease of application of two
operational implicit flood routing models, DWOPER and DAMBRK previously
described by the author (2,3). Although the computational extensiouns
presented were developed for particular models, most are generally
applicable to dynamic routing models of the implicit (linear or non-
linear) or explicit type.

Computational Extensions

Networks.——A network of channels presents complications in achieving
computational efficiency when using the implicit formulation. Equations
representing the conservation of mass and momentum at the confluence of
two channels produce a Jacobian matrix in the Newton-Raphson method with
elements which are not contained within the narrow band along the main-
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diagonal of the matrix. The column location of the elements within the
Jacobian depends on the sequence numbers of the adjacent cross sections
at the confluence. The generation of such "off-diagonal”™ elements
produces a "gparse” matrix containing relatively few non-zero elements.
Unless special matrix solution techniques are used for the sparse
matrix, the computation time required to solve the matrix by conven-
tional matrix solution techniques is so great as to make the implicit
method infeasible. The same situation also occurs for the linearized
implicit methods which must also solve a system of linear equations
similar to the Jacobian. Two algorithms have been used by the author
for an efficient computational treatment of channel networks.

The first, called the "relaxation” algorithm, 1is restricted to a
dendritic (tree-type) network of channels in which the main channel has
any number of tributary channels joining with it. Sometimes, dendritic
systems with second-order tributaries (tributaries of tributaries) can
be accommodated in the relaxation technique by reordering: the dendritic
system, i.e., selecting another branch of the system as the main chan-
nel. In the relaxation algorithm, no sparse matrix 1is generated; the
Jacobian is always banded as it is for a single channel reach. This
algorithm has been described previously (1).

The second, called the "network” algorithm, can be used on almost
any natural system of channels (dendritic systems having any order of
tributaries; bifurcating channels such as those associated with islands,
deltas, flow bypasses between parallel channels; and tributaries joining
bifurcated channels). The network algorithm produces a sparse matrix
which is solved by a special matrix technique which treats only non-zero
elements. The relaxation algorithm is somewhat more efficient than the
network algorithm, but the latter is more versatile.

The network algorithm 1is based on the treatment of the channel
junctions (confluences, bifurcations) as internal boundary conditions
using the following three equations:
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in which D is the average depth in the junction, n is the Manning n for
the junction, w, 1is the acute angle between the upstream reach and the
branch, M 18 an exponent assumed to be unity, and m is the total number
of Ax reaches located upstream (downstream) along the branching channel.
The parameters C; and C  are related to friction effects and to the head
loss due to mixing as reported by Lin and Soong (4), respectively. The
superscript (j) and the subscript (1) represent respectively the time
line and cross section location in the x-t computational plane.

Computational efficlency is achieved by minimizing the number of
off-diagonal elements in the Jacobian and by minimizing the creation of
new off-diagonal elements during the elimination phase of the matrix
solution. Also, the way in which the cross sections are assigned
sequential numbers within the channel network is important in effecting
the desired minimization. The numbering scheme is as follows: numbers
run consecutively in the downstream direction until a dendritic-type
junction is reached; then the most upstream section of the dendritic
branch is given the next consecutive number and the numbers increase in
the downstream direction along this branch until another junction is
reached; then the most upstream section of that dendritic branch 1is
numbered and the numbers increase in the downstream direction along that
branch until a new junction is reached; this is repeated until all
sections have been numbered, including the first cross section of the
branch of the very first dendritic-type junction; then the numbers
continue to increase along the downstream branch of this junctionm.
Bifurcations are numbered in a similar manner.

Computational efficiency 1is achieved also by use of a specially
developed matrix solution technique of the Gauss elimination type which
operates on only non-zero elements in the matrix through use of a speci-
fied code number for each cross section in the network of channels. The
specified code number is as follows: (1) regular cross section, (2) up=-
stream boundary, (3) downstream boundary, (4) dendritic-type junction,
(5) dendritic-type junction emanating from a bifurcated channel branch,
(6) upstream junction of a bifurcation around an island, (7) downstream
junction of a bifurcation around an island, (8) bifurcation-type junc-—
tion emanating from another bifurcated channel and joining with a third
bifurcated channel, and (9) bifurcation-type junction emanating from a
bifurcated channel and joining into the other branch of the bifurcation.

The Jacobian 1s a 2N x 2N matrix where N is the total number of
cross sections. The number of operations (addition, subtraction, multi-
plication, division) required to solve the matrix is approximately (102
+ 46J)N, where J is the total number of junctions. This is compared to
(95N-48) opetat}onszfor the relaxation algorithm, (38N-19) for a single
channel and (5N°+8N“+5N) for a standard Gauss elimination method.

Internal Boundaries.—There may be locations such as a dam, bridge,
or waterfall (short rapids) along a waterway where the Saint-Venant
equations are not applicable. At these locatious, the flow is rapidly
varied rather than gradually varied as necessary for the use of the
Saint-Venant equations. Empirical water elevation—discharge relations

such as weir-flow can be utilized for simulating rapidly varying flow.
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Unsteady flows are routed along the waterway including points of rapidly
varying flow by utilizing internal boundaries. At internal boundaries,
cross sections are specified for the upstream and downstream extremities
of the section of waterway where rapidly varying flow occurs. The Ax
reach length between the two cross sections can be any appropriate value
from zero to the actual measured distance. Since, as with any other Ax
reach, two equations (the Saint-Venant equations) are required, the
internal boundary Ax reach requires two equations. The first of the
required equations represents the conservation of mass with negligible
time-dependent storage, i.e.,
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The second of the required equations can be any appropriate empiri-

cal rapidly varied flow relation between discharge (Q,) and the upstream

and downstream water surface elevations, e.g., the %low through a dam

spillway and/or breach, a bridge, a critical flow section, or the
overtopping flow of a bridge embankment. .

Levee Effects.--Flows which overtop a levee located along either
side or both sides of a channel may be simulated since any number of Ax
reaches may bypass flow via a broadcrested wier-flow equation to another
channel which represents the floodplain (beyond the levee). The flood-
plain channel may either directly connect back into the waterway at some
downstream location, or it may be disconnected as in the case of the
floodplain within a ringed levee where the flow is ponded with no exit.
The hydraulic connection may be either a natural confluence or a flap~-
gated gravity drainage pipe. The flow in the floodplain can affect the
overtopping levee flows via a submergence correction factor K similar
to that used at internal boundaries of dams. The flow may also pass
from the waterway to the floodplain through a time-dependent crevasse
(breach) in the levee.

The overtopping and/or breach flow is routed through the floodplain
which is considered as a tributary of the waterway along which the levee
is located. The tributary (floodplain) channel must have a fictitious
low-flow channel in which a small steady flow occurs at all times before
the lateral inflow from the overtopped (breached) levee enters. The low
flow, specified via the upstream boundary condition for the tributary,
is necessary so that the Saint-Venant equations can be continuously
solved during the simulation; however, at the hydraulic connection with
the channel, the fictitious low flow is not added to the channel flow
nor is it included in the flow that ponds within a ringed levee.

Depending on the relative elevations in the channel and floodplain
(tributary), the overtopping levee flow can reverse its direction and
flow from the floodplain back into the channel. Each Axy reach for the
channel has a corresponding Axm reach along the floodplain channel.
Each Ax, reach has a submergence correction factor (K, ), a broadcrested
weir flow coefficient (C,. ), and a mean elevation (%? ) of the top of
the levee. The effect of the levee flow is achieved by considering it
to be lateral inflow or outflow (q) in the Saint-Venant equatiouns. When
routing the flow in the channel, if the flow overtops the levee and
enters the floodplain, it 1is considered as bulk lateral outflow. When

routing in the floodplain, the levee overtopping flow is considered as
lateral inflow. The overtopping flow is computed as follows:
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in which S_ determines the appropriate sign (- is outflow, + is inflow),
h is the average water elevation along the Ax, reach, h is the average
water elevation along the same Ax reach of the floodplain. Of course,
the lateral flow may be zero when the water elevations do not overtop
the levee or when the elevations are exactly the same. The overtopping
levee flow is assumed to enter perpendicular to the direction of flow in
the floodplain. Thus, it does not affect the conservation of momentum
except when it 1s considered as bulk lateral outflow.

Mixed Flow.——When the flow changes with either time or distance
along the routing reach from supercritical to subcritical or, con-
versely, the flow 1is described as "mixed”. During each time step,
subreaches are delineated where supercritical or subcritical flow exists
by computing the Froude number at each cross section and grouping con-
secutive Axi reaches 1into either suberitical or supercritical sub-
reaches., Then, the Saint-Venant equations are applied and solutions
obtained for each subreach, commencing with the most upstream subreach
and progressing downstream until each subreach has been solved. Appro-
priate external boundary equations are used for each subreach.

Where the flow changes from subcritical to supercritical, the down-
stream boundary for the subcritical subreach is the critical flow equa-
tion. The two upstream boundary equations for the supercritical
subreach are the computed flow at the downstream boundary of the sub-
critical subreach and the computed critical depth. The supercritical
subreach does not require a downstream boundary equation.

When the flow changes from supercritical to subcritical, the up—-
stream boundary equation for the subcritical subreach is the computed
flow at the downstream section of the supercritical subreach. The down-
stream boundary for the subcritical subreach would be the critical flow
equation if another supercritical subreach exists below the subcritical
subreach; if not, then an appropriate downstream boundary condition for
subcritical flow would be used. The depth of flow at the first section
of the subcritical subreach is determined by the downstream boundary
condition and the Saint-Venant equations applied to the suberitical
subreach. A hydraulic jump occurs between the last section of the
supercritical subreach and the first section of subcritical subreach,
although an equation for such is not directly used. To account for the
possible movement of the hydraulic jump, the following procedure is
utilized before advancing to the next time step: (a) the water eleva-
tion at the first section of the subcritical subreach is extrapolated to
several upstream cross sections near the downstream end of the super-

critical subreach; (b) the sequent depths (water elevations) of the same



sections in the supercritical reach are computed; and (c) the sequent
elevations are compared with the extrapolated elevations, and the first
section of the subcritical subreach 1s determined as that section

nearest the intersection of the two elevations.

Enhancement of Basic Computational Algorithm.-—An automatic proce-
dure which increases the robust nature of the four—point, nonlinear
implicit finite difference algorithm 1is quite useful when treating
rapidly rising hydrographs in channels where the cross sections have
large variations in the vertical and/or along the x—axis. This situa-
tion may cause computational problems which are manifested by non-
convergence in the Newton-Raphson iteration. When this occurs, the
following procedure is implemented.

The current time step (At) is halved and the computations are
repeated. If non-convergence persists, At is again halved and the com-
putations repeated. This continues until a successful solution 1is ob-
tained or the time step has been reduced to 1/16 of the original size.
1f a successful solution is obtained, the computational process proceeds
to the next time level using the original At. If the solution using
At/16 is unsuccessful, the O weighting factor is increased by 0.1 and a
time step of At/2 is used. Upon achieving a successful solution, O and
the time step are restored to their original values. Unsuccessful solu-
tions are treated by increasing © and repeating the computation until
© = 1.0 whereupon the automatic procedure terminates and the solution
with © = 1. and At/2 is used to advance the solution forward in time but
using the original © and At values. Often, computational problems can
be overcome via one or two time step reductions.

Linearly Interpolated Cross Sections.-—An algorithm to generate
additional cross sections between any two adjacent specified cross
sections has been found to be quite useful. The properties of the
additional sections are linearly interpolated from those of the end
sections. This facilitates adherence to appropriate Ax reach lengths
to insure computational accuracy and the use of smaller Ax distances in
expanding or contracting reaches. Both active and of f-channel storage
widths are generated via the interpolation procedure.
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