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A Point Process Model of Summer Season Rainfall Occurrences
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A point process model of summer season rainfall occurrences is developed. The model, which is
termed an RCM process, is a member of the family of Cox processes (Poisson processes for which the
rate of occurrence of events varies randomly over time). Model development is based on counts and
interarrival time statistics estimated from Potomac River basin rainfalf data. The counting parameéters
used are the conditional intensity function, index of dispersion, and counts spectrum: the interartival
time parameters are the coefficient of variation and the autocorrelation function. Explicit results are
presented for the counts and interarrival time parameters of RCM processes. Of particular importance
in this paper is the interpretation of clustering suggested by the form of the RCM process. For the
RCM process the rate of occurrence alternates between two. states; one of which is 0, the other
positive. During periods when the intensity is 0, no events-can occur. The form of the intensity process
suggests that clustering of summer season rainfall occurrences in the Potomac River basin results from
the alternation of wet and dry periods. Computational results are presented for two extensions of the
RCM process model of rainfall occurrences: a marked RCM process model of rainfall occurrénces and

associated storm depths and a bivariate RCM process model of rainfall occurrences at two sites.

1.. INTRODUCTION

Kavvas and Delleur [1981} and Waymire and Gupta [1981}
have discussed point process models of rainfall-occurrences
which possess cluster properties. The models they propose
are ‘members” of ‘the family of Poisson cluster processes.
Kavvas and Delleur claim:that the Poisson cluster processes
provide not only a‘model that fits the statistical properties of
rainfall occurrences in Indiana (over the entire year) but also
a~compelling interpretation of the process of clustering,
based on frontal passages. In this paper we describe the
development of a point process model of summer season
rainfall occurrences for the Potomac River basin. Analysis of
rainfall data for the Potomac [Smith, 1981] indicates that
cluster properties are an important feature of summer season
rainfall occurrences. The model that is developed here is a
member of the family of Cox processes (also known as
doubly stochastic Poisson processes) and is called an RCM
process (for renewal Cox process with- Markovian intensity).
A Cox process is-a Poisson process with a randomly varying
rate of occurrence. The interpretation that we suggest for a
Cox process model of rainfall occurrences is that the rate of
occurrence of storms is determined by a randomly varying
‘climatological process.’ The form of the RCM process; and
in particular; the presence of a ‘0" rate, suggests an interpre-
tation of clustering based on alternation of wet and dry
periods.. Namias [1966] has related summer season dry
periods in the Northeast to the frequent advection of cold air
from Canada. Smith [1981] has shown that synoptic condi-
tions during summer season drought periods in the Potomac
River basin (1950-1970) correspond closely to the pattern
described by Namias. We use this information along with the
form of the RCM process to conclude that cluster properties
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of summer season rainfall occurrences in the Potomac River
basin are drought-related phenomena. ; -

During early phases of the study, three classes of station-
ary point processes (renewal processes, Cox processes, and
Poisson cluster processes) were considered as models of
summer Potomac rainfall occurrences. Model selection was
based on two properties of the data: the counting statistics,
which use numbers of events in specified intervals, and
interarrival time statistics (or interval statistics), which use
the times between events. The counting parameters which
we employ are the conditional intensity function, index of
dispersion, and counts spectrum. The interval parameters
that are used are the coefficient of variation and autocorrela-
tion function. ‘

Model selection is based on two related criteria: consisten-
cy with the Potomac rainfall data analyzed by Smith [1981]
(see also section 3 below) and computational tractability.
The latter is necessary not only for application of the model
but also for verification that key features of the data, which
involve both counts and interval properties, are satisfied. All
three classes -of processes mentioned above are broad
enough to represent diverse kinds of data, and all, but
especially the Cox and Poisson cluster processes, have
appealing physical interpretations. The three classes, how-
ever, have differing degrees of computational tractability,
depending on what is to be computed. Renewal processes
are tractable in terms of interval properties but not necessar-
ily counts properties, while the reverse is true for Cox
processes and Poisson cluster processes. Since one property
of the data is the interval property of its being a renewal
process, this suggests that one should seek a model that is
simultaneously a renewal process and a Cox process or
simultaneously a renewal process and a Poisson cluster
process. Then the latter property will be exploited for
analysis of counts properties. Therefore a key step in model
selection is characterization of the intersections of the
renewal ‘processes. and Cox processes and of the renewal
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processes and Poisson cluster processes. As described in
more detail below, the latter intersection (which consists
only of Poisson processes) is too small to reproduce *cluster’
properties of the data. However, a subclass of the renewal
Cox processes, namely the RCM processes, is broad enough
to contain processes exhibiting all the features of the data.
Another important feature of RCM processes from. an
applications viewpoint is computational tractability. In addi-
tion to obtaining the counts and interval properties of the
RCM processes, we illustrate the ease with which the RCM
process of rainfall occurrences can be extended to (1) a
‘marked’ RCM process of rainfall occurrences and associat-
ed storm depths and (2) a multivariate RCM process of
rainfall’ occurrences at several sites, both of which are
consistent with the data analyzed by Smith [1981].

2. DEFINITIONS AND NOTATION

Two classes of stochastic processes are drawn upon in this
paper. In this section we present the definitions and proper-
ties of point processes and Markov. processes that are
required in this paper. For further details, consult Waymire
and Gupta [1981], Snyder [1975); Kallenberg [1975], Cinlar
[19751, and Cox and Isham [1980].

Let (Q, F, P) be a probability space and let R, = [0, =)
denote the nonnegative half line. A point process over R, is
a random process representing times of occurrences of
(otherwise indistinguishable) events. Denote by T(n) the
time of the nth event, with 7(0) = 0. Throughout we assume

by

La(f) = E[exp (— f f(s) AN (s)):l
Q0

where f is a nonnegative function defined on R.. Waymire
and Gupta [1981] present a detailed discussion of the impor-
tance of such transforms in applications of point process
models in hydrology. Kallenberg [1975] presents the follow-
ing theorem, which indicates equivalent methods of specify-
ing the distribution of a point process.

Theorem

Let N.and M be simple point processes. Then the follow-
ing are equivalent:

d
N =M (&)
LN(f) = Ladf) V=0 2)
P(N(A) =0) = PIM(A)=0) VA 3)

The choice of which method to use to specify the distribu-
tion of a point process is generally dictated by computational
tractability. In general, transforms are easier to obtain than
finite dimensional distributions; transforms yield moments
by differentiation and facilitate description of asymptotic
properties of the process; see Waymire and Gupta [1981} for
additional details. The zero probability functional Z(4) =

that the sequence (7(n)) represents a simple point process in
the sense that T(n) < T(n + 1) for each n and lim,... T(n) =

. The first condition prohibits coincident events, while the

second ensures that every finite time interval contains only a
finite number of events. The interarrival times U(i) = T(i) —
T(i — 1) represent times between events. The two sequences
(T(n)) and (U(i)) each contain a full description of the process
of events.

Yet another equivalent description of the point process is
by the (real time) counting process (N(z), t = 0) defined by

N({t) =n t € [Hn), T(n + 1))

Then N(1) is the random number of events occurring in the
time interval (0, t] and fors < 1, N(t) — N(s) is the number of
events in the interval (s, r]. The fundamental relation be-
tween (7(n)) and (N(p) is that for each » and ¢,

T(n) <t it N(t) = n

We will use the notation N(A) (i.e., N with an uppercase
argument) for the number of events in a subset 4 of R, . For
our purposes, events will be rainfall occurrences.

We say that two point processes N-and M have the same
distribution provided that the finite dimensional distributions
are identical, i.e.,

P(N(Ai)‘zkiﬂi:15“‘?"):P(M(Ai)=ki7i: l#"’»”)

for all nonnegative integers n, ky, + -+ , k, and all sets A;. We

write

IF e

N =M

for'equality in distribution.
The Laplace functional Ly of a point process NV is defined

P(N(A) = 0) shares computational advantages of the Laplace

functional and has the additional advantage -of yielding
explicit: probabilities; however: (even: though it uniquely
defines the ‘law - of the process); much useful information
(e.g., moments) is not easily obtained from it. Its relative,
the zero probability function Z(r) = P(N(1) = 0) = P(T(1).>
t), does not uniquely define the distribution of N; however,
both are of particular interest in applications pertaining to
drought, since they are directly related to the duration of dry
periods {see, e.g., Gupta and Duckstein; 1975].

Throughout this paper we impose the distributional as-
sumption of stationarity. A point process:N is. said to be
stationary if :

PN+ D) =kij=1.- - .m = PINU) = kij=1,- - ,n)

for all choices of n = 1, nonnegative integers k;, t = 0, and
intervals I;,; where for an interval I = (u, v}, [+ t=(u + 1, v
+ t}is the interval obtained by translating I by ¢ units to the
right. ‘Stationarity impliés that the probabilistic structure of
the point process is unaffected by a change in the time origin
and ‘can be ‘interpreted: heuristically -as ‘meaning that the
process began long enough ago to have reached a steady
state (in which random fluctuations can still occur).

The first- and second-order moments- of the counting
process ‘N(#) and of the interarrival times U(i) are used for
analysis of the Potomac rainfall occurrence data. The count-
ing parameters which are examined are the following.

Conditional intensity function:
oo.d
me(t) = c; EIN(DIN©) = 1]

The expectation is defined with réspect to'the Palm function
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of N, P(N(t) = k|N(0) = 1), which can be defined as follows:

P(N(1). = KIN() = 1) = lim P(N(1).— N(s) = kIN(s) = 1)
540
Index of dispersion:
I(t) = V(t)/mt

where V(1) = vai (N(1)) is the variance time curve of N and
< vy
= - VLT
dt

is the intensity of N.

Counts spectrum:

S

gi(w) = (]/77)[ exp (fwt) 1) dt w>0

—

where

y() = lim cov (N(t + s + u)

w0

= N(t + s)/u, (N(s + u) — N(s))u)

is the covariance density of N ( for ¢ < 0, y(1) = y(—0); to
extend (1) to 0, méd(z) is added to y(r), where 8(1) is the
Dirac delta function). The moment properties used for the
interarrival times are the standard parameters used in the

——analysis-of time series, i.e.; the mean, variance; coefficient

of variation, and autocorrelation function.

Four classes of stationary point processes are discussed in
this paper. Below we present definitions for Poisson pro-
cesses, Cox processes, and renewal processes. Waymire and
Gupta [1981] present a detailed discussion of Poisson cluster
processes.

Poisson processes play a central role in the theory and
applications of point processes. Extensive discussion of
Poisson processes, from both applied and theoretical view-
points, can be found in works by Cox and Lewis [1966],
Cinlar [1975], and Snyder [1975].

A simple point process N is a homogeneous Poisson
process if the following conditions are true.

1. For every finite collection of disjoint sets A;, - - -,
Ay, the random variables N(A), * ~ -, N(A,) are indepen-
dent.

2. There is a constant m = 0 such that for every A, N(4)
has a Poisson distribution with parameter m|A|, where |A] is
the Lebesgue measure [Rudin, 1974] or length of A.

Thus, if A = (s,s + 1], |A| = t and

P(N(A) = k) = exp (—mt) (m)*/k! k=0,1,2, - -

The following are basic: distributional properties of a
Possion process with parameter m.

COVIUW, UG + j)-= 0, for j # 0.

1. Nis a stationary point process with intensity m.
2. La(f) = exp (=m ["(1 = ™) ds).

3. Z(A) = exp (—m|Al).

4. Z(t) = exp (—mi).

5. my(n) = m.

6. I(n)= 1.

7. g lw) = mlmr.

8. CV(UG)) = 1.

9.

Kingman [1967] refers to the independent increments
property {(condition 1 in the definition) as the ‘completely
random’ property. Khinchin [1956] calls the Poisson process
a point process that:-evolves ‘without aftereffects.” Smirth
[1981] proposes a framework for interpreting clustering in
point processes as departure from the Poisson process
assumptions. The conditional intensity function plays an
especially important role in interpreting cluster properties of
point: processes (as well as in development of the point
process model of rainfall occurrences described in the fol-
lowing sections). Specifically, a conditional intensity. func-
tion greater than the intensity indicates ‘random clustering,’
in which a point of the process is relatively more likely than
an arbitrary point in time to be followed by additional points.
On the other hand, a conditional intensity function less than
the intensity corresponds to ‘regular clustering,” where a
point of the process is less likely than an-arbitrary point in
time to be closely followed by further points. The extreme in
regular clustering is a process with equally spaced points. A
point process with a constant conditional intensity exhibits
neither form of clustering. Note that for a stationary point
process the conditional intensity function converges to the
intensity, i.e:,

lim me(t) = m

>

Thus for both of the cases described above, we are referring
to behavior of the conditional intensity function in ‘short’
intervals following the origin.

The-conditional-intensity-function—of -a-Poisson-process
(property 5 above) is constant and equal to the intensity m.
Thus for a Poisson process the rate of occurrence of events
in an interval (s, s + #] is unchanged by knowing. that an
event occurred at s, i.e.,

E[N(t + 5) — N()INUsp = 1]

I

mit

EIN(r + 5) — N(s)]

Il

This result has particularly strong connection with: intuitive
notions of nonclustered processes; for a Poisson process an
arbitrary point of the process is neither more likely nor less
likely than an arbitrary point in time to be followed by
additional points.

Cox [1955] introduced a class of point processes which can
be described as Poisson processes with randomly varying
intensities. Processes of this type have been referred to as
Cox processes [Kallenberg, 1975], doubly stochastic Pois-
son processes [Bartlert, 1963], and conditional Poisson pro-
cesses [Serfozo, 1972]. Serfozo refers to the random intensi-
ty process as -an ‘environmental process,’  with the
interpretation that the occurrence process is operating in a
randomly evolving *environment.” LeCanmi {1961] describes a
complicated three-stage model of precipitation that in some
specific instances reduces to a Cox process; however, his
model does not contain our model as a special case.

A Cox process is -defined by means of a stochastic
intensity process, which is a nonnegative stochastic process
(Mu), u = 0). Let A be the random measure defined by

A(A) = f Nuw) du
A

A point process N is a Cox process directed by A if the
following are true.
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‘1. Forevery finite collection of disjoint sets Ay, -+ + + |
A,,, the random variables N(A,), ; N(A,) are condi-
tionally independent given A

2. For all nonnegative integers k& and all sets A.

P(N(A) = K|A) = exp (—A(A)AA)K!

the conditional distribution of N(A) given A'is Poisson
w1th parameter A(A4).
The basic distributional properties of the Cox processes
are as follows.

A Cox process N i isa stationary point process if and
only if the intensity process (Mu)) is a stationary stochastlc
process [Karlin and Taylor, 1975].

2. La(f) = Elexp (= fo"(1 — e *\(s) ds)).

3. Z) = Elexp (—=A@)], where A1) = [o'NMu) du.

Note that if (i) is constant (i.e., both nonrandom and
independent of time) and equal to m, then

Latf) = exp (—mJ (1 — o~/ ds)

0

Thus the Poisson processes are a subset of the Cox process-
es.

A point process N is a stationary renewal process if the
interarrival times U(i) are 1ID (independent and identically
distributed) with distribution F and T(1), the time to the first
event, is independent of the interarrival times U(i) with
distribution

3.  DEVELOPMENT OF THE POINT PROCESS
MoDEL

The counts and interarrival time parameters described in
the preceding section were estimated for summer season
(July-October) rainfall occurrences at 15 sites in the Poto-
mac River basin. (The period of record for each of the gages
was 1950-1970. The sequences of arrival times were ob-
tained by associating a single rainfall event with each day on
which 0.01 inches ‘of rainfall or greater were recorded. See
Smith [1981] for details on the data and procedures; the latter
are based on those of Lewis et al. [1969].) The principal
qualitative features of the data are as follows.

1. The conditional intensity function begins much larger
than the intensity, then decreases rapidly to the intensity.

2. The index of dispersion of the counting process is
greater than one.

3. The counts spectrum decreases with increasing fre-
quency.

4. The coefficient of variation of the interarrival times is
greater than one. :

5. The interarrival times are uncorrelated. ;

We also treat the data as a stationary point process. While
the assumption of stationarity is seldom valid over the entire
year, it is generally possible to break the year into seasons
over which the assumption'is appropriate. Data analysis by
Smith [1981] suggests confirmation of the stationarity as-
sumption for July-October rainfall occurrences in the Poto-
mac River basin. ‘ ‘ i

We first note that each of the properties 1-4 fails for

G =J (1~ F(s)) ds/J (1 —F(s)) ds
0 0
For a detailed discussion of renewal processes, consult
Cinlar [1975].

We will need the following definitions and properties for
Markov processes. A stochastic process (Mu), u = 0) is a
(time homogeneous) Markov process with state space E =
(A, o0 o N, if for every ¢, s > 0, \; € E,

POt + s) = MNNMw), u = 8 = PN + 5) = NND)
= P,(\M0), N)

where Py( , )is a Markov matrix. The family of matrices
(P, , ), u=0)isreferred to as the transition function of
the process, and satisfies the well-known Chapman-Kolmo-
gorov equation:

Pl‘!‘S:P(PS

The limit distribution 7of (\(u)) is given by
77'(1) =lim P\ (u) =\)

U>x

Conditions for the existence of 7 and methods of calculating
7 are given by Cinlar {1975].

A finite state’ Markov process can be characterized as
follows [Cinlar, 1975];

1. The sequence of states visited forms a Markov chain.

2.  The sojourn times (i.e., the times spent in states) are
conditionally independent given the states visited.

3. Each sojourn time has an exponential distribution
with parameter dependent only on the state being visited.

Poisson processes. The general interpretation of these prop-
erties is that of clustering (i.e., departure from a Poisson
process) and, more specifically, that of ‘random’ rather than
‘regular’ clustering. We wish to find a stationary point
process model that possesses the five characteristics listed.

Our development of a point process model begins with
property 5, which suggests (even though independence is a
stronger condition than 0 correlation) a renewal process
model for rainfall occurrences. A direct approach to obtain-
ing a renewal process model would be to specify an interarri-
val time distribution F that leads to the properties. 1-4 being.
satisfied. Cox and Lewis [1966] present the following formu-
las that relate counting parameters of a renewal process to
the interarrival time distribution:

m(s) = f*()(1 = f*(s)) 4
VE(s) = mis® + 2mmp(9)ls” — 2m’ls’ S)
gilw) = (mm(l + mFio) + mF(—iw)  (6)

where m is the intensity of the point p‘rocess,
f(9) = [o" exp (=sOf (1) dt

is the Laplace transform of the interarrival time probability
density function f (assuming that it exists), and m/® and V*
are, respectively, the Laplace transforms of the conditional
intensity function and variance time curve. To implement
the direct approach, one must specify F, use (4)—(6) to-obtain
the conditional intensity function, index of dispersion, and
counts spectrum, and then verify properties 1-4.

The difficulty one encounters in obtaining the counts
properties from the interarrival time pdf’s.is, of course, that
of inverting the Laplace transform in (4). Among the. usual
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~candidates: the Weibull, lognormal, and gamma distribu-
tions, we haye been able to invert n;* only fora special case
of the gamma. distribution, and in this case the conditional
-intensity function increases to the mtensuy implying that
properiy 1is violated.

- “Rather than pursue mdiscnrnmateiy a search tor an inter-
arrival time distribution with appropriate counts properties,
‘we proceed instead by further restricting the form of the
renewal process model. As discussed above, the Cox pro-
cesses and the Poisson cluster processes are appealing in
terms of physical interpretation and computational tractabili-
ty of counts properties. Therefore we narrow our search for

a model to the class of stationary point processes that are

either simultaneously renewal processes:and Poisson cluster
processes or simultaneously renewal processes and Cox
processes. It is then necessary to. characterize these two
intersections of classes of point processes.:

Haberland [1975] showed that the only Poisson cluster
processes that are also stationary renewal processes are the
Poisson processes..Consequently, a Poisson cluster process
cannot be found which satisfies both the counts and interval
properties. listed -above; specaﬁuaily, no Poisson cluster
process satisfies properties 2 and 5. -

Kingman [1964] characterized the class of Cox processes
~ that are also renewal processes and showed this class to be
strictly larger than the Poisson processes. Kingman showed
that the intensity process (AM(u)).of a renewal Cox process is
of the following form:

...(Mu)) 1s-equal to A > 0 and 0 alternately on intervals whose

lengths are independent random variables, -the lengths of the
intervals-on which A(u) = \ having an exponential distribution and
the lengths of the intervals on which Mu) = 0 having an arbitrary
distribution G.

In view of these results, we now. seek a model that is a
stationary - point process, a renewal process, and a Cox
process, simultaneously. By Kingman’s characterization we
are free to choose only the distribution G of the sojourn
times of (A(x)) in 0, which we do with two objectives: so that
we have computational tractability and so that properties 1—
4 of the data are satisfied. Fortunately, the natural choice for
G, i.e., an exponential distribution (but with a different
parameter from that for the state \J, attains both objectives,
as we now proceed to discuss.

Note that an important consequence of the assumption
that the distribution of sojourn times in 0 is exponential is
that’ (AM(w)) is ‘a Markov process. This follows from the
characterization of Markow processes in the preceding sec-
tion and: Kingman’'s characterization of (A(z)). We use the
term RCM process to refer to a renewal Cox process for
which the intensity process is a ‘Markov process. In the
remainder of this section we develop properties of RCM
processes.

The following result is used to verify property 1 of the
data. Let N be a Cox process with Markov intensity process
(Ma)). Suppose that (x(u)) has state space E = (A, - -,
N\, and transition function (P,{ - ), u = 0) and that.a limit

distribution 7 exists {see section 2). Suppose further that

X(0) has distribution #; which implies that (AM(u)) 1s strictly
stationary [see Karlin and Tavlor, 1975] and hence that N is
a stationary point-process.

Proposition

Under the assumptions set forth in the preceding para~
graph, the conditional intensity function of N is given by

#n n 7n =1
my(t) = 3, (E NP, A;)) {(w(j)xj)‘( > w(k)m) } ;
gt it ‘ Nk=1

(7N
The proof is given in the appendlx

In particular, if N isan RCM process, then the state space
of (Mu)) is (0, N): and the precedmg propesntlon 1mphes that

mp(t) = AP{AN, X)

Let a; and a, be the parameters of the exponential sojourn
distributions-of (Mu)) in 0 and A, respectively. Then the
transition function can be computed by methods descnbed
by Cinlar [1975], giving, in this case,

P;‘(}\, )\) = (l]/((ly + {12) =+ (az/(m + ag))(’vtalﬂlﬂl~ (8)

Noting that the intensity m of an RCM process is given by
m = Aay/la, + a,), we have arrived at the following
expression for the conditional intensity function of an RCM
process: ‘

me(t) = m + (\afla; + ay))e " ttar 9)

Note, in particular, that the conditional intensity function
decreases exponentially to the intensity, implying that prop-
erty 1 'holds for RCM processes.

~The-variance-time-curve-V(#)-and-counts-spectrum- g+(co)~~ i

are obtained from (5)-and (6). These results, along with the
index of dispersion, I(t) = V{(t)/mt, are presented below:

V) = me+ 2 (1 — e~tartainy |
ayla + az) (ay + az) ‘
(10)
2mas 1
=1+ —" — (] — e lartay

@ ala, + a») I: Ha, + a») { ¢ )]
(1
| e P —— 12
o=\ e P

These results imply that properties 2 and 3 hold for RCM
processes. Thus we have shown that all the counts proper-
ties are satisfied. It remains only to show that the coefficient
of variation of the interarrival times is greater than 1.~ =

Kingman [1964] obtains a representation for the Laplace
transform. of the interarrival time distribution for renewal
Cox processes. We adapt the result for RCM processes.

Proposition

The Laplace transform of the interarrival time distribution
of 'an RCM process is given by

. Als -+
q;(s) — E[éfslj(z)] . : (s a|) (13)

$2 4 () +ar + Ns Fa

Moments for the interarrival times can be obtained from the
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formula

= E[UG

e ()
— )k
kb ds*

giving for the RCM processes,
var (U(i)) = (1/m)* + 2a\(a\)? 14

CVIUD) = in{(1/in)* + ZasM(a NP2 (15

Most importantly, we note that the coefficient of variation
_is greater than 1. Thus the final property that we require the
point process model to satisfy has been verified.
Additional computational results for RCM processes are
presented by Smith [1981]. Of particular importance are the
Zero pmbabiiity function, Z(1) = P(N(1) = 0), and the
probability generating function, ®(s, 1) = E[sM7]. The zero
probability function is of interest in applications pertaining
to droughts, since it is directly related to the duration of dry
periods. In the: following section the probability generating
function arises in obtaining distributional results for the
‘marked’ RCM process model of rainfall occurrences and
associated stormdepths; Calculations for Z(r) and ®(s, 1) are
based on methods presented by Grandell [1976]. The results
are given below.

;Q)(s, [) = Al(s)e—rl(.ﬂt 4 Az(s)é’vm('\')f
Z(1) = A(0)e O Ay(()e 7O

(16)
(17)

where

processes. Probabilistic properties of the process (T{). Y(i)
were estimated for the Potomac rainfall ‘data by Smith
[1981]. These results indicate that a model of rainfall:occur-
rences and storm depths for the Potomac basin should have
the following properties (in addition 'to- those previously
1isted for the process N of occurrence times).

~The storm depths (Y(i)) are 1ID.

2. ‘The occurrence process N and the storm depth pro-
cess (Y(1)) are independent:

Given a specification of distributional properties of N,
those of the process (7(i), ¥(i)) are.completely determined by
specifying the distribution  of the storm depths Y(). In
applications; interest has focused on processes derived from
the marked point process rather than on the process (7(i),
Y(i)) itself. In this section we examine distributional proper-
ties of two processes derived from (7(i), ¥{i)): the accumulat:
ed rainfall process and the process of storm occurrences
with storm-depths greater than a specified threshold.

The accumulated rainfall process and the process of storm
occurrences greater than a threshold ¢ can be expressed in
terms of N and (Y(i)) as follows:

N
M = 3 Y

i=1

N
NAD = 3 WYy > ¢)

i=1

where

As) = 1+ {[(a; + @)* — aM1 — 9)]
(@ + a2)*((ay + a1 = $)* = da\(1 = sH'?] 71}
Axs) = 1 — Ay(s)

ri(s) = A = ) = [AM1 = ) + 2a — ay)
ML= $) + (a; + @172 + ar + ay
rs) = —ris) + a; + a + M1 — )

The form of the RCM process is of particular interest in
modeling rainfall. During periods when the intensity process
is in the state 0, there can be no rainfall events. Thus the 0
state in the intensity process can be interpreted as a ‘rainfall-
inhibiting’ state. Smirh [1981] presented evidence that asso-
ciates historical periods of dry summer weather in the
Potomac basin with the advection of cool, dry, stable air
masses from Canada. These considerations strongly suggest
an interpretation of the cluster properties of rainfall ‘occur-
rences based on the alternation of wet and dry ‘periods.’ It
should be noted that this ‘interpre‘tation of clustering is quite
different from the interpretation that Kavvas and Delleur
[1981] obtain from a Poisson cluster process, in ‘which

clusters of rainfall ‘occurrences are associated with frontal
passages. A major difference in the two modeling efforts is
that Kavvas and Delleur consider rainfall occurrences over
the entire year, while we restrict consideration to summer
season rainfall occurrences.

4. MARKED: POINT PROCESS MODELS

In this section we discuss extensions of the RCM process
model of rainfall occurrences to models for which a storm
depth Y(J) is associated with a storm occurrence at the time
T(i). Processes of this type are referred to as marked point

Ky > o) =1
=0

Yy > ¢
otherwise

To interpret, M(1) is the total rainfall in the time interval [0,
t], while N.(¢) is the number of rainfall events in [0, ¢] for
which the associated storm depth exceeds c.

The most important consequence of properties 1 and 2,
above, is that M and N, can be modeled as compound point
processes. Let B, B(1), B(2), be IID nonnegative
random variables with distribution G which are independent
of N. Then the process

N(n)
> BG)

=1

S =

is a G compound of N. The Laplace functional

Ls(f) = E{BXP (* J f(s) dS (s))} k
0

for a G compound of a Cox process directed by A‘cém be
expressed as follows [Kallenberg, 1975): :

Ls(f) = E[exp (“ f (1 = Lp(f(5))) dA (S))j] ,
o

where Lg(u) = Elexp (—uB)] is the Laplace transform of B.
Below we summarize distributional properties of the accu-

mulated rainfall process M(f) under conditions 1 and 2,

above, and the assumption that N is an RCM process.

Proposition

Let Ly(s) be the Laplace transform of Y(i), u = E{ Y()] and
a® = var (Y(i)). Then the following occur.
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ol Elem™MB = B(Ly(s), 1), where ®(v, 1) is the probabili-
-ty generating function of N, given in (16):
2. E{M(t}] = umt. :

3. var (M) = omt + >V, where V(l) is glven in( 10)

The calculations appear in the work by Smith [1981].

lzagle son [1978] notes that accumulated rainfall in humid
climates is approximately normally distributed for long time
intervals. The following proposition shows that 'this is. in
fact, the case for the process we have described.

Proposition.
Letf, k= 1,2, --- be a sequence of positive real

numbers increasing to infinity. Under the assumptions of the
previous proposition,

M) — uml‘k

—k =k N,
var(M(1;)"? ©. D

where % denotes convergence in distribution and N(0, 1)
denotes a standard normal random variable. The proof of
this proposition is based on a result of Karr [1978].

The counts and interarrival time parameters for progres-
sively thinned rainfall occurrences (i.e., N, for ¢ = 0.03 in.,
0.05 in:; 0.10 in., -') were estimated by Smith [1981} for
the Potomac basin rainfall data. It was determined that the
thinned rainfall occurrences retained the counts and interar-
rival time properties presented in section 3. This implies that
the form of the counts and interarrival time parameters of the
thinned arrival process N, should be the same as in (9), (11),

<(12);-and-(15),-but-that,-roughly speaking, these parameters

should be scaled to reflect the decreasing frequency of
events. Wenow proceed to show that under properties 1 and
2, above, and the assumption that N is. an RCM process, the
properties of the thinned arrival process are consistent with
the data analysis results.

A p thinning of a point process is a specm} form of
compounding in which the random variables B, B(1), B(2),

- can assume only the values 0 and 1 [see: Kallenberg,
1975] and where p = P(B = 1). The interpretation is that the
p-thinning process results from independent trials in which
each point of the original process is retained (in the same
location) with probability p and deleted entirely with proba-
bility 1 = p. Under assumptions 1 and 2, above, the process
N of occurrences of storms with storm depth exceeding ¢ is
a p thinning of the original occurrence process N, with p =
P(Y(n) > ¢). In this case, Ly(u) = 1 — p(1 — ¢ . By
substituting into the expression for the Laplace functional of
a compound Cox process, we obtain the Laplace functional
Ly of a p-thinning N of N:

Ly(fy = E[exp (— J' ’ p(1 = e /) dA (s)”
it
- E[exp (~ f (1= e V) di (sﬂ
i}

where A(f) = pA(z). Thus the p thinning of a Cox process
directed by A is itself a Cox process, directed by pA. In
particular, a p thinning of an RCM process with intensity
parameter A is an RCM process with intensity parameter p\.
As aconsequence, counts and interarrival time properties of
a p thinning of an RCM process are immediately available
(substitute pA for X in (10) to (17)).

Since the thinned data sets exhibit the same qualitative
properties (listed at the beginning of section 3) as the original
data set; and in view of the discussion in the preceding
paragraph, we see that the RCM model of rainfall occur-
rences is also entirely consistent with the charactensncs ot
the thmned data.

5. A BIVARIATE RCM PRGCESS

In this section a bivariate RCM process model of rainfall
occurrences at two sites is presented. The intensity process
(A(w)) provides the means through which site to site correla-
tion is introduced into the bivariate RCM process model. An
interpretation of the bivariate RCM process model described
below is-that rainfall:at two sites is correlated because both
sites ‘are under the influence of the same ‘climatological
state.” We conclude this section with a discussion of extend-
ing this-concept to a rainfall model that mcorporates climato-
logical observations.

We assume  that the bivariate point process (Nm Ny)
satisfies the following.

1. "N, is-an RCM process with intensity process (A1)

2. Ny is'an RCM process with intensity process (Auw)):

3. Nyand N, are conditionally mdependent given ()\(u))

The mam result is the fol]owmg

Proposmon

Cov (N,(1), N,,(t)) =var (N,()) = mt; var (N,4(1)) (which
equals var (N,(1))) is: given in ( 1()) The proof is given by
Smith [1981].

In applications of Cox processes the intensity: process S —

often explicitly related to a specific physical mechanism. For
example, in'Cox’s study of stoppages of looms [Cox, 1955],
the diameter of the yarn being fed into the loom is held to
affect the rate of stoppages. The yarn occurs in homoge-
neous segments of random lengths that are ‘tied’ together.
Thus the intensity process for loom stoppages is similar to
oursi it remains constant for-a period of time then shifts to a
different level.

For the rainfall ‘model this suggests the possibility of
explicitly relating - rainfall - to: climatological ' processes
through a catalogue of climatological states. What we are
suggesting is a Cox process model of rainfall occurrences for
which the states of the intensity process correspond to
observable climatological processes. A useful class of mod-
els to consider for this purpose is the Cox processes with
Markovian intensities.. Thus ‘if there are k climatological
states, the intensity process (A(«)) is a-Markov process with
state space (A, -+, M. A space-time rainfall model is
being developed along these lines by the authors.

6. SUMMARY AND CONCLUSIONS

In this paper we have developed a point process model of
summer season rainfall occurrences in the Potomac River
basin. The model is-an RCM process (renewal Cox process
with -Markovian intensity): a Cox ‘process for which the
intensity process (A(u)) 1s a Markov process with two states,
0-and X >0. The principal steps in the development of the
univariate-point process model are the following:

1. -The counts and interarrival ‘time’ properties that we
require the model to satisfy were obtained from a statistical
analysis of Potomac rainfall data [Smith, 1981]. " The require-

‘ments for the model are presented at the beginning of section

3.
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2. From the interarrival time and counts propemes we
conciude that an appropriate model for the rainfall data
cannot be found within the class of Poisson processes,

3. The interarrival time results for: the rainfall’ data
indicate that the model should be a renewal process. We are
unable by direct specification of the interrenewal distribu-
tion to obtam the counts properties that are required because
of computational difficulties.

4. The key step in-model selection is characterizing the

intersections of the renewal processes and Poisson cluster

processes and renewal processes and Cox processes. The
Poisson cluster processes are dropped from consideration
‘due to the fact that the intersection of the Poisson cluster
processes and renewal processes consists only of Poisson
processes. The intersection of the renewal processes and
Cox processes contains more than only Poisson processes.
For reasons of computational tractability we restrict consid-
eration to the renewal Cox processes with Markovian inten-
sity process:

5. The most 1mp0rtant computational result obtamed n
this paper is. an expression for the conditional intensity
function -of a Cox process with Markovian intensity. This
result enables us to compute the counts properties of an
RCM process: We obtain the conditional intensity function,
index of dispersion, and counts spectrum for RCM process-
es. The conditional intensity function decreases exponential-
ly to the intensity, the index of dispersion is‘greater than 1,
and the counts spectrum decreases with increasing frequen-
cy. The results are consistent with the counts propemes

the intensity process, suggests that cluster properties of
Potomac rainfall occurrences result from the alternation of
wet and dry periods. Namias [1966] notecl that durmg the
drought of the 1960’s;

. over much of the Northcast the prevaﬂmg anomaious compo‘
nem of air flow was from the northwest. The Nonheast area was
characterized by frequent subsuimg large-scale air motions. The
frequent advection of cold air from Canada provided below
normal temperatures as well as deficient precipitation.

A comparison of periods of low summer precipitation in the
Potomac during the period 1950-1970 with synoptic condi-
tions [Smith, 1981] supports the hypothesis that periods of
deficit rainfall in the Potomac basin are most commonly
associated - with the invasion of cool, dry Canadian air
masses. The RCM process provides a point process model of
rainfall occurrences which not only is consistent with data
analysis results for the Potomac River basin but also yields
insight into the role of drought periods in the summer season
rainfall process.

' APPENDIX ; ; ;
Proposition (7) will be proven by a sequence of lemmas.

Lemma 1

P(N(t) = KN©) = 1) =3 PN = k]NO) = X))
i=1 i

PNO) = \IN(O) = 1)

~outlined-in section 3:

6. ~We show :that the coefﬁment of  variation of the
interarrival times for an ' RCM process is greater than 1. This
is the last of the counts and interarrival time properties that
we required a point process model to satisfy. (The indepen-
dence of the interarrival times follows directly from the fact

- that the process is a renewal process.)

7. - In section 4 we extend the model to-a marked RCM
process model of rainfall occurrences and associated storm
depths. The main assumptions are (1) the occurrence proc-
ess N is independent of the storm depth process (¥(¥)) and (2)
the storm depths: Y(1), Y(2), are IID. We derive
distributional properties of two processes derived from the
marked point process model, as follows.

The accumulated rainfall process:

N1
IR (U]

i=1

M@ =

The thinned rainfall occurrence process:

N1y
>OHYe) > c)

=l

Ndn =

8. A bivariate- RCM process is described in section 5.
The main assumption is that arrivals at one site are condi-
tionally independent of arrivals at a second site, given the
intensity process, but not independent of arrivals at- the
second site. Thus site to site correlation results from the two
sites being under the influence of the same climatological

state. We obtain the covariance function of the two counting

processes. We conclude with a discussion of incorporating
meteorological information into-a Cox process model.
The form of the RCM process, in particular the 0 state in

Proof
It will be recalled that the Palm function of N is defined by

P(N(t) = kIN(0) = 1) = lim P(N(t) — N(s) = kIN(s) = 1)
s30 3

Now we compute P(N(1) — N(s) = k|N(s) = 1);
P(N(1) — N(s) = KN(s) = 1)

P(N(t) = N(s) =k, Nis)= 1)
P(N(s) = 1)

= é: P(N(0) = N(s) =k, N(s) = 1, \(s) = X))
= ;
“[P(N(s) = D]

= 2 PIN(D) — N(s) = kINGs) = \i, N(s) = 1)
~':’](}\(s) = N N(s) =

vV

) [P(NGs) = D]

= 2 PIN@) -

i=1

N(s) = kM) = M)PIMs) = MN(s) = 1)
Thus

lim P(N(t) — N(s) = kIN(v) =.1)
si0

= luﬁ > P(N(t) — N(s) = k!)\(s) = N)P(A(s) = A}N(s) = 1)

lell
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= > PIN(t) = kINO) = A)PIMO) = NINO) = 1)
i=1
The step for which the Markov assumption on (A(w)) is
crucial is
P(N(t) — N(s) = kINs) = A, Nisy = 1)
= P(N(1) — N(s) = k]\(s) = \)

Corollary

EIN(IN©) = 1] = 3 EIN(OINO) = A
=1

“ POMO) = NNOO) = D)

Lemma 2

n -1
PINQ) = NNW©O) = 1) = w(i‘)}\i[E 77(/)?\}:!

Lt

Proof

The process (M) is strictly stationary if and only if the
initial distribution of (M) is the limiting distribution [Cin-
lar, 1975]). Therefore

POMO) = NNO) = 1) = lim POA(s) = ANGs) = 1)

Lo

s

= Hm (P(N(s) = 1M(s) = AYs)P(AGs) = APIN(s) = 1)s]!

s, 0

[ n 1

k=1

Lemma 3

oo
E /\/'P,(()\,’. }\,) du

j=l

EIN@DINO) = N = J

O

Proof

EINMINO) = A}

EIEIN(OINMu), u = t]IN0) = N

!
hljf M) duln0) = )\,]
0

!
= J EINGOINOY = N du
0
t
0

= > NP, N du

J=1

This completes the proof of the proposition.
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