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A methodology is presented for assessing the value of river forecasting to possible changes in existing
precipitation and streamflow networks. This study was undertaken as a part of an effort to evaluate the
expected benefit of automating all or part of the data gathering networks used by the National Weather
Service. A surrogate measure of benefits; called the ‘mean forecast lead time,” is related indirectly to
benefits because the value of river forecasting depends on the lead time available for the flood plain
dweller to take action and respond to the forecast. Presented here is the rationale for the methodology
and the results of part of the research using streamflow generated by Hurricane Agnes (June 1972) and
Hurricane Eloise (September 1975) for the Susquehanna River basin.

INTRODUCTION

The objective of this analysis is to analyze the trade-off be-
tween network automation, rain gage density, stream gage
density, and reliable forecast lead time. The work is within the
context of the river forecasting responsibilities of the National
Weather Service (NWS). The detailed analysis is within the
context of a systems analysis of river basin flood forecasting
given network rain data. :

The method of analysis is to model measurement errors in
streamflow and mean areal precipitation (MAP), to simulate
streamflow forecasts and to investigate user response to fore-

cast reliability. Changes in network design are analyzed to de-

termine changes in forecast reliability. The simulations are
currently conducted using an existing, calibrated rainfall-run-
off computer program used for river forecasting in the Sus-
quehanna River basin. Thus a case study analysis is used to
test the general concept.

This study is undertaken as part of an effort to evaluate in
particular the expected benefits of changing network density
and of automating all or part of the networks now used by the
NWS. Ideally, it would be desirable to estimate the in-
cremental benefits of network improvements directly in dol-
lars so that comparisons might be made between these bene-
fits and the costs of achieving them. Although some rough
estimates can be made of the dollar benefits of network im-
provements on the basis of this study, there are so many types
of flood damages such as residential, commercial, industrial,
municipal, agricultural, etc., that there is a considerable
amount of difficulty in making dollar benefit estimates. Nev-
ertheless, a surrogate measure of benefits can be made that
has a reasonable degree of utility. This surrogate measure
called the ‘mean forecast lead time’ (MFLT) [Sittner, 1977] is
strongly related to benefits because the value of river forecasts
depends on the lead time available for users in an endangered
area to take action and respond to the forecast. A limited
amount of information exists from studies in the Susquehanna
basin to relate MFLT to the damage reductions to residential
properties as a percentage of the flood damages that would oc-
cur without response to a flood warning.
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A curve [Day, 1970] which conveys the utility of MFLT to
society is shown in Figure 1. The damage reduction is related
to error-free forecast lead time up to a limit corresponding to
maximum practiced evacuation of flood prone areas. The situ-
ation is complicated by the fact that higher peak stages cause
higher damages and by the fact that forecasts have errors in
timing and peak stage. Forecast errors have a financial cost to
users. While errors resulting in a low forecast result in water
damage and possible loss of life, a forecast which exceeds the
resulting crest may result in unneeded and expensive evacua-
tion expenses.

The research effort involves the development of ‘a master
computer code to present equally likely rainfall traces to an
existing rainfall-runoff model. This proved 'to ‘be a complex
but worthwhile interface to master. The master code [Relyea,
1968; Richards and Strahl; 1969} was developed to allow the
rainfall traces to reflect errors associated with various network
design possibilities. *

As background for this systems analysis, consider the tim-
ing relationships in a NWS river stage forecast. Discounting
the effects of model error and network errors, there are three
time-related factors: (1) the time required for the runoff to
move through the system: of ‘catchments and river forecast
points in-the basin, (2) the reporting delays associated with
rainfall and streamflow measurements, and (3) the time re-
quired to produce and disseminate forecasts. S

In greatly simplified terms the MFLT at a downstream
point is item 1 less the sum of items 2 and 3 from: the list
above. It is the time from the issue of a warning of a given
flood stage until that predicted stage is observed. However,
the system is dynamic and non-linear, forecasts are issued
during rising ‘water ‘at approximately ‘every 6 hours corre-
sponding to the network reporting interval and errors are part
of the estimates of the subshed mean areal precipitations.
Also, those affected by the forecast are located at different lev-
els in the flood plain. As a result, different amounts of lead
time are available during any event to different users: There-
fore the forecast lead time is reported as a mean value to all
users. This value is affected by errors associated with mean
rainfall estimates, with streamflow measurement error and by
the time delays to operate the entire forecast system.:
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Some of the technical relationships involved in the study
are (1) the network density versus variance of mean areal
rainfall relationship (as the number of gages increases the var-
iance decreases), (2) the variance associated with stream gage
measurements at points within the basin, and (3) the response
time relationship of rainfall reporting systems. For example,
for a gage operated and reported on by a person (a ‘cooper-
ator’) there is a lag. It takes time to read and call in the data.
The number of gages reporting tends to increase with time.
Therefore there is also an effective increase in density with
time after each reporting interval. The reporting interval is 6
hours in a fixed frame of 0, 600, 1200, 1800 Greenwich mean
time.

To sum up, the main objective of this work is to assess the
changes in mean forecast lead time, which is a surrogate bene-
fit measure, that occurs from changes in the number of rain
gages or in the number of automated gages in network. The
role of automation is to eliminate time delay and increase the
proportion of gages actually reporting.

The sections of this paper discuss the conceptual basis, sim-
ulation approach, the benefit measure, the network tradeoffs,
typical results and the conclusions. The overall research fo-
cuses on-a subbasin of the Susquehanna River and the im-
pacts of Hurricanes Agnes (June 1972) and Eloise (September
1975):. These two storms generated estimated flood damages of
$4,678 million and $135 million; respectively. These two
events were selected because the damages were substantial
and because the hydrometeorological data were on file and
available for analysis. The goal is that a damage reduction es-
timate can be related directly to a network design using rela-
tionships involving mean forecast lead time or similar forecast
outputs.

CONCEPTUAL BASIS

The general approach is to use mathematical models to as-
sess. the effects of precipitation and stream gage network den-

(error free), hours

Damage reduction.

sity and automation on the effectiveness of river forecasts.
These mathematical models are organized to form the concep-
tual representation of river forecasting illustrated in Figure 2.

Base Event

Conceptually, a natural hydrometeorological event occurs
and the idea of forecasting is to say how this event will evolve
before and during the event. Actual historical events can
never fully be observed and, therefore, are physically un-
knowable. Conceptually, however, it is necessary in this study
to ‘know’ the actual event because the performance of the
data networks and the forecast operations depends, in part, on
what actually happens. Therefore the approach is to define a
‘base event’ on the basis of available historical data. In this
study, historical measurements of precipitation during hurri-
canes Elois¢ and Agnes over the Susquehanna River basin are
used to define the conceptually ‘error free’ but in reality un-
knowable amounts of mean areal precipitation (MAP) over
each subbasin in the river forecast system for the basin. The
conceptually error free streamflow for the base event is ‘de-
fined as the streamflow that results by inputting the previously
defined MAP into the calibrated rainfall-runoff model used in
the river forecast operation. Together these MAP and stream-
flow time series form a base event. '

Network Models

Three types of network models are included. These are for
precipitation, streamflow and quantitative precipitation fore-
casts. In each case, the output from the network involves in-
troducing an appropriate amount of ‘noise’ to the base event
and then transposing forward or backward in time the net-
work output to be available in the simulation at the same time
as in real-time operations. ‘ ‘

Network noise. Network noise is introduced by multi-
plying the data value of the base event for a given time period
by a random deviate having an appropriate mean coefficient
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Fig. 2. Conceptual representation of river forecasting.

of variation, and serial correlation coefficient, depending on
the detailed characteristics of the individual network (e.g.,
precipitation, streamflow or QPF). The logic is illustrated by
focusing on operational estimates of MAP.

Mean areal precipitation for each subbasin is estimated op-
erationally as a weighted average of data from N rain gages.
The estimated MAP (i.e., x,) differs from the true MAP (i.e,,
%) by the error ‘

ey =Xy—X ¢y

The variance of ey is 0% which depends on the variance o°, of
the point values of precipitation, on the location of the N
gages, on the spatial correlation structure of the precipitation
process, on the weights given to the individual gage data val-
ues, and on the size of the subbasin. The theory of how o,? de-
pends on o® is presented by Rodriguez-Iturbe and Mehia
[1974aq, b] and by Schaake [1979].

If point measurements of precipitation, x, were spatially
uncorrelated and equally weighted, and if the point variance
of the precipitation process, ¢, were not a function of sub-
basin area, then g, could be expressed as a function of ¢* by

02
2 2
On N (2)
In the presence of spatial correlation;
02
2 gl
on’ =K+ 3)

where K accounts for the effect of spatial correlation. K is a
function of rain gage location, number of gages, spatial corre-
lation structure and gage weighting and the size of the sub
area.

Because o* depends on X, it is more convenient to work with
the coefficient of variation of the point process

[e]

cv==< @)

X

and the error coefficient of variation
CVy=— &)

In practice it has been found that this type of expression
can be fitted exponentially with

CVy = aoX " X, X, 6)

where the coefficients a,, @,, a,, as, etc., found using log trans-
formed least squares analysis of site specific data. The X can
be selected as the number of gages, size of basin, distance be-
tween gages and similar factors.

For example, data from the Muskingum, Ohio basin have
yielded the empirical relationship

CV, = 0.0554%3/(N*?) (@)

where A is area in square miles and N is the number of gages.
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The empirical exponent on N of 0.602 differs from the spa-
tially independent value of 0.5 according to (2) because of the
influence of spatial correlation.

Timing relationships.  In addition to network errors there
are network ‘timing relationships that impact MFLT ex-
pectation and variation.

Once the network data have arrived at the river forecast
center, there is a processing and dissemination time. This time
reduces MFLT and limits the type of flooding suuatlons that
can benefit from a river forecast operation.

When an event occurs, there is a time lag before data are
available to the forecaster. This is called network response
time, 7, and is the time it takes to acquire enough data to
make a forecast from the network. This is partially con-
trollable: one can make an early forecast with a small amount
of network data or one can wait and acquire more data prior
to making a later forecast. Judgment and analysns such as de-
scribed herein, can be used to select .

- Furthermore, the number of gages reporting in each water-
shed after each time interval is not equal to the total number
of gages physically located in the watershed. This directly im-
pacts-the error relationships. Figure 3 shows this relationship
for the two classes-of gages: automated and cooperator. The
concept of effective number of gages is illustrated.

Consider the automated gages. The reporting time is fast
and depends on the operating characteristics of the communi-
cations system. Perfection is not completely possible because
of gage and communication equipment down time and the
possibility of blocked transmissions. The proportion of auto-

JETTMAR ET AL HYDROLOGIC NETWORK  DESIGN

mated gages that can be expected to report after a period of
time 7 is fi(7). This function is illustrated in Figure 3. The
maximum value of f,(7) is always'less than 1.0 in a large net-
work because gages don’t work properly all of the time.

Consider the cooperator gages. People are ‘involved. They
may not be home. They may be asleep. They may not per-
ceive ‘the need to report because their locale is relatively dry
but in the midst of a significant regional storm. Any number
of reasons may cause them to be late or to completely miss re-
porting a rain that induces flooding. In this case, the effective
number of cooperator gages may be much less than the total
number of gages. Or, with respect to Figure 3, f3 .. < 1.

To summarize the reporting situation as depicted by Figure
3, the variables are as follows:

N total number of gages in a subwatershed;

fraction of gages that are automated;

fraction of automated gages reporting at the network
response time;

fraction of cooperator gages reporting at the network
response time.

P
Si(7)
SoAr)

The reporting fractions f, and £, are determined from curves
that are empirically derived at river forecast centers. Thus the
effective number of gages N is

= [p/i(n) + (1 = p)a(DIN ®)

It is possible to increase effective number of gages by either
increasing p, by increasing N, and by increasing f,... and

N = total gages

p = fraction automated:

A

(1-p)N =

1.0

fl max |

O0<p<1l

automated

reported by cooperators

£q(8)

fraction reporting

Automated

Cooperators

£, (¢)

?-———- network response time

1 2 3

Time
Effective Number

>

4 5 6
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Fig. 3. Reporting network response function.
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foman- The effective number of gages is then used to compute
the coefficient of variation of the MAP.

The next section discusses the river forecast system used in
this study. The system includes a river forecast center rainfall-
runoff model that is used to generate and analyze the base hy-
drograph.

River Forecast System

The Susquehanna River forecast system uses an ‘event’ ap-
proach [Richards and Strahl, 1969]. The basic time interval is
6 hours. Rainfall and streamflow data from the network sup-
port a 6-hour computational interval. The data come from a
mixture of automated sites and cooperators who monitor
gages.

Mean areal precipitation is computed as a weighted average
of gage sites for each subbasin. Direct runoff from the sub-
basin is calculated using an antecedent precipitation index as
a surrogate for soil moisture which is corrected for time of
year. At the start of a storm, the time of year, the antecedent
precipitation index, and the base flow are known and define
the initial state of the basin. The subbasin runoff hydrograph
is'a function of mean areal precipitation, storm duration and
the initial state of the basin.

The subbasin hydrographs are introduced into the stream
channel system and the flow is routed to the downstream fore-
cast points using a so-called lag and K approach. This ap-
proach is typical of NWS river forecast center operations, par-
ticularly in the past. The approach is a computer application
of standard hydrologic methods as they were employed in a
‘hand calculation’ context. The methods tend to be very situa-
tion specific and empirical. Nevertheless, it is within the con-
text of this approach that base hydrographs and ‘noisy’ inputs
are analyzed in this study. The technical operations of NWS
are decentralized and this led to each river forecast center
being individualistic in their application of hydrologic tech-
nology, a disadvantage for systematic study to obtain general
network design criteria.

Currently there is a state of transition. There is a movement
to ‘continuous’ models that are based upon soil moisture ac-
counting. [National Weather Service, 1972] Their degree of
empiricism is less than the event methods. This has a benefit
for systems analysis of networks because the new generation
of models are documented and generalized for widespread us-
age. The introduction of network analysis simulation proce-
dures into the continuous simulation context is a goal of
NWS.

User Response and Impacts

The evaluation of data networks should depend upon their
ultimate value to society. In the case of river forecasting,
much of this value derives because users have time to respond
to the forecast and take action to reduce their losses. Although
this study does look directly at the economic benefits of data
network river forecasting, it also offers the valuable opportu-
nity to look at forecast lead time as a surrogate measure for
economic benefits. Because data networks can never provide
sufficient information to determine exactly the flooding condi-
tions for the future, there must always rémain some uncer-
tainty in the flood forecast. This uncertainty in turn can be
translated into uncertainty in the amount of lead time actually
available to forecast users. In other words for a given network
design, there would be a distribution of possible lead times
that could actually occur for a given flood event depending on
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the actual errors introduced by the network at that time. Be-
cause the variability in the MFLT to the network noise is in-
dicative of economic costs of under or overestimating flood
stages, a ‘reliable MFLT,’ that value which is expected to be
exceeded 95 percent of the time, is used as a surrogate mea-
sure of benefits to forecast users of flood warning service. The
reliable MFLT is decreased by uncertainty introduced into
forecast operations by any source, including network noise
and model error.

SIMULATION METHOD

Figure 4 shows the overall scheme. Historical records are
used to produce a base event. Mean areal precipitation data in
the base event are error free. These error-free MAP data are
processed by the rainfall-runoff model to produce hydro-
graphs or flood state histories that are assumed error free.
These hydrographs are termed the base hydrographs.

Then network parameters are used to generate measure-
ment noise to be added to the historical mean rain record. The
noise is a function of the network density; density varies with
time during each reporting interval in accordance with empir-
ical data on cooperator performance.

As Figure 4 shows, replicate, equally likely traces of noisy
data are presented to the rainfall-runoff simulation. The noisy
forecasts are compared with the base hydrograph forecast to
obtain samples of the mean forecast lead time. These samples
are thus Monte Carlo data from which to compute the relia-
bility of the mean forecast lead time.

The simulations provide the ability to relate the forecast re-
liability to network density and to the number of automated
gages in the network. Practically speaking, the approach is
‘messy’ for the following reasons:

1. The rainfall-runoff model is exceedingly complex in its
file structure and logic. The Susquehanna computer model
has evolved from the earliest computers. It is very situation
specific and tedious in its management of the hydrologic com-
putations.

2. The model must be initialized to a common set of start-
ing conditions prior to each replicate simulation.

3. There are many forecast points in a basin. Therefore
there is an MFLT for every point in the river basin for which
NWS issues forecasts. In the Susquehanna, for example, there
are approximately 40 forecast points.

The simulation approach uses various error relationships as
follows:

1. The population mean of the mean areal precipitation,
MAP,,, for each time interval i for each subwatershed j is as-
sumed to be the same as was measured during a significant
historical event.

2. For each subwatershed a coefficient of variation of
MAP error CV,(i, j) is calculated based on the subwatershed
effective number of rain gages N.. Note that one can para-
metically study the number of gages N and fraction auto-
mated p by varying these parameters at this point in the anal-
ysis.

3. Replicate simulations of rainfall measurements are ob-
tained by adding noise to the population mean of the mean
areal precipitation. For the kth replication, the ith interval
and the j watershed,

MAPmeasured = MAPhistorical exp (an + sz) (9)
where

avg=ln (CV>~1 (10)
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and ¥, , is a random variable having a zero mean and a stan-
dard deviation that depends on the network density, size of
MAP area, sampling interval and storm characteristics.

4. Each simulated rainfall measurement series is processed
with the rainfall-runoff model to obtain simulated runoff fore-
casts. Simulated model error sequences can be added to ac-
count for limitations inherent in the rainfall-runoff model.

5. The NWS measures river stage at upstream points as
well as point rainfall. This introduced another gaging net-
work, the stage gages, into the analysis. In fact this network,
in the past, was the primary early warning system on floods.
The pressures for more forecast lead time led to the rain gage
networks. This older, stage network, is used in the rainfall-
runoff modeling for base flow initialization and for continuing
adjustments to upstream routing errors in a2 manner analogous
to Bayesian updating in a real-time context. Measurement
and reporting noise is introduced into the simulation method

to represent the stage errors and more importantly, to repre-
sent uncertainty in the stage-discharge relationship.

6.. The stage forecasting process can theoretically utilize a
forecasted rain to secure additional lead time. As it stands
now, typically the stage forecasts are made based on rain that
has already fallen. Research is being conducted to understand
the effects of uncertainty in forecasts of rain for future 6-hour
increments. corresponding to the rainfall-runoff model timing
conventions. Such rain forecasts and their standard errors. are
included in the simulation method. In principle, quantitative
precipitation forecasts should tend to increase the overall
stage forecast lead time but the effect of uncertainty will also
increase the forecast variance and thereby decrease the re-
liable MFLT. : ‘

7. Each runoff forecast is compared with the base hydro-
graph forecast to analyze mean forecast lead time and its vari-
ance. . .
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To sum up, the overall method permits study of improve-
ment of reliable mean forecast lead time attributable to auto-
mation (mcreasmg p) to increasing the number of gages (in-
creasmg N) to changing the mix of rain gages and stream
gages and to reducing uncertainty in the QPF through im-
proved meteorological methods. This is done by selecting N

and p for each watershed and then by generating the Monte

Carle model outputs of noisy forecast data which are ana-
lyzed for variance. Model error is assumed to be of second-or-
der importance. Tt i is also assumed that the nature of model er-
rors would be ‘similar from ‘model to model but that the
parameters would change. The precise impact of model errors
on this study is left for future work.

- The simulation of forecast lead times is a research pro;ect
and is being viewed: in the broadest possible manner. Future
versions of the method may consider refinements or other er-
rors in a production model for network analysis. In terms of
pinning down the method’s exact configuration, it represents a
‘moving target.” The underlying computer program is being
_improved and updated very frequently.

RELIABLE LEAD TIMES AND BENEFITS

- - The mean forecast lead time (MFLT) computation is illus
trated in Figure 5. In this example a sequence of forecasts is
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issued as the rain continues. This leads to a sequence of fore-
cast stages that are successively higher. Each forecast hydro-
graph is compared to the base hydrograph. The time from the
time of forecast issuance to the time the forecast stage occurs
in the base hydrograph is the lead time for that forecast. Thus,
MFLT is the dverage over the forecast sequence of warnmg
times until actual stages match the forecast stage.

Notice by inspection of Figure 5 that a computational tim-
ing difference can occur between the forecast hydrograph and
the base hydrograph. In the example the shift is positive. It
could also be negative. This shift does not affect the MFLT
definition. Thus; the definition represents the interval from
the time of the notice of the possibility of a future flood stage
till the time of the actual flood stage.

“'One can deduce, during rising stage, that successive forecast
lead times exist, but that the last forecast may be in error.
Typically, the issue time of last forecast corresponds to the
end of the rain. The last forecast can under or overshoot the
peak of the actual flood. The convention used to weight this
case, allowing for some tolerance interval, is to assign a zero
lead time if the last forecast(s) misses its mark. :

One can further deduce, that rainfall and streamflow mea-
surement errors will add noise and decrease the lead times of
forecasts. Logic indicates that input noise will contribute to

EXCERPTED FROM:NOAA Tech.Memo. NWS HYDRO -~ 36
by Walter T. Sittner, Aug. 1977.
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Fig. 5. Mean forecast lead time. -
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output noise. Input noise decreasing output expectation is a
fact deriving from the penalties associated with missing the
last forecast during .a forecast sequence:

Let us further examine the linkage of MFLT to beneﬁts
The Monte Carlo simulation approach used herein develops
the sampling distribution 'of MFLT. If.the input rain data
have low noise the MFLT distribution will have low variance
and cluster at its mean. High noise will spread the distribu-
tion. The central tendency of the MELT varies inversely. with
high or low noise in the inputs because of the penalty poten-
tial of a miss on the last forecast of a sequence of forecasts
during rising stage. Thus, MFLT variance reduction and ex-
pectation increase is the impact of an improved network. How
does this tie in with benefit estimation?

The answer must be phased in probabilistic terms coupled
with incremental benefits. Consider Figure 6 which shows hy-
pothetical MFLT distributions for two alternatives. Alterna-

A

5% AREAS

PROBABILITY DENSITY
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tive 1 has noisy inputs associated with low gage density or low
automation. Alternative 2 has lower variance inputs associ-
ated with high gage density or high automation. The MFLT.
distributions for these cases can be derived by Monte Carlo
simulations using the rainfall-runoff model.

The left-hand tails of these distributions give probablhstlc
lead times T, and T, for which the probability is 95% that the
actual lead time is greater. One would be: 95% confident of
these lead times; the level of confidence that we used earlier to-
define our reliable lead time. These reliable lead times link to
the damage reduction curve, with 95% confidence, to give the
incremental  increases. .or damage reduction associated with
improved networks. The benefit is thus the incremental dam-
age reduction of alternative 2 over alternative 1 as depicted in
Figure 6.

The damage reduction curves are probability valid but their
estimation is difficult. Therefore, the focus of the network

ALTERNATIVE 2 (high automation
or high density)

ALTERNATIVE 1 (low automation

‘/’or low density)

—~| =

MFLT DISTRIBUTIONS

(generated with Monte Carlo
simulations)

= Incremental increase in damage

— reduction at 95% confidence

.

FRACTION DAMAGE REDUCTION
A
!
|

L

Forecast Lead Time

Let: D = potential damage given
no forecast
Then: AB = 6 x D =

incremental benefit of Alternative 2

over Alternative 1

Fig. 6. Probabilistic incremental benefits.
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evaluation is. on investigating .the impact of measurement
noise upon the distribution of MFLT. The discussion in this
section is intended to rationalize the selection of the 95% con-
fidence MELT value as a surrogate for benefit. Reduction in
reliable lead time is taken to be directly related to the benefit
measure. Future efforts can move closer toward direct benefit
evaluation. Also the 95 percent level could be further ana-
lyzed for appropriateness.

To sum up; the calculation of reliable lead times is the pay
off of this research. This section illustrates how reliable lead
times may be related to benefits. The next: section-discusses
typical reliable lead time results.

TYPICAL RESULTS

An upland subbasin- of the Susquehanna River basin in
Pennsylvania was isolated for preliminary study. The purpose
of this initial work was to debug the simulation program and
test the logic on real data.

The real data consisted -of (1) all the detailed hydrologic
overland flow and channel routing coefficients calibrated by

“ the NWS staff, (2) stage versus flow curves, (3) a collection of
six subbasins and six river forecast points, and (4) mean areal
rainfall data from past hurricanes (Agnes and Eloise) to use as
inputs to generate the base hydrographs.
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These data are a subset of the model and data used to fore-
cast floods in the Susquehanna basin. The future modeling
will address this larger basin as the testing progresses.

The preliminary testing was successful in that the behavior
of typical reliable lead time forecasts was as expected. Figure
7 shows such typical results.

The curves in Figure 7 are representanve of dlﬁ“ermt levels
of automation. The effects of automation are to increase the
effective rain gage density and to drive the input uncertainty
lead times. Each curve: in Figure 7 is calculated using 20
Monte Carlo computer runs sunulaung forecasts in the testmg
subarea.

The results demonstrated that as automation increases; (1)
the mean lead time increases, (2) the standard deviation of the
lead time decreases, and (3) the reliable lead time increases.

These effects were expected and the testing confirms the ra-
tionale. for conducting the research. Future efforts will move
to larger systerms and new data sets-to quantify the network
tradeoffs. The research, to dafe, has-shown the feasibility of
the approach and had confirmed the logic.

NETWORK ANALYSIS POSSIBILITIES

The rain and stream gage network simulator as described
herein can be used to analyze the effects of the following.
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Fig. 7. Typical results.
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Automation ‘of reporting networks.  Higher automation
should cut down on network response time and increase effec-
tive number of: reportmg sites. Both effects shouid increase
MFLT.

Increased numbers of gages.  This will decrease the vari-
ance of weighted inputs to simulation models.

Gage down time. - The model can consider the maximum
number of reporting gages to follow a random distribution to
simulate the effects'of gage down time. This will permit the re-
view: of “in-house ‘or contract agreements for gage mainte-
nance. ~
Varying the network response time . Various levels of
imply a trade-off between information on hand and versus ad-
ditional delay to acquire more information.

Introducing quantitative precipitation forecasts (QPF) into
MFLT estimation. QPF will incréase mean lead time but will
also add significant noise which tends to reduce reliable lead
time. The necessary improvement in' QPF to increase reliable
lead time can be determined.

Model error. At present we do not have an estimate of the
magnitude of model error. Future work may. provide esti-
mates which can be used to relate to MFLT.

Various components-and sources of error.. " The individual
component error impacts on MFLT can be used as a guide to
priorities for modeling and network improvements.

In general, the approach is meant to be a very general net-
work analyzer focused on user-oriented network products.
Any error generating component can be introduced and ana-
lyzed. Furthermore, the use of the network analyzer in a sen-
sitivity analysis context can pinpoint the effects on forecast re-
liability of any error sources in the network configuration and
rainfall-runoff model structure.

The models are also amenable to application to snowfall
networks involving temperature and snow water equivalent.
This use of the network simulator is a straightforward appli-
cation of the concepts and networks of this paper.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn:

1. The network simulation methodology is feasible and
flexible and preliminary results meet expectations.

2. The methodology relates directly to a measure that
links to benefits, the reliable mean forecast lead time.

3. The methodology can be used to analyze the issues of
network design including gage density, automation, gage
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down time, network timing relationships, effects of rain fore-
casts, and model and other sources of error.

4. The methodology is expected to meet a significant
number of management needs of the NWS for network design
and the investigation of various river forecast operations.

5. - Future work will be guided by specific management
needs and hypotheses geared toward i lmprovmg reliable fore-
casts. :

6. The method can'be used to evaluate existing networks.

7. Given network and modeling automation, the method
can be used to automatically select the network response time.

The following recommendations can be made:

I. A more detailed analysis and investigation of the Sus-
quehanna data base should be undertaken.

2. The linkage to benefits should be extended and pinned
down with an objective of direct benefit estimates being gen-
erated as functions of network design parameters.

3. The methodology should be generalized to the current
generation of state-of-the-art conceptual ramfall—runoﬁ‘ mod-
els being introduced within NWS.

4. ‘An analysis should be conducted with the methodology
on sufficiently general data sets to enable the generation of
network design guidelines and criteria. ;
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