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Accuratc hvdrologlc forecasung for basms with a short respanse time depends on the abnmy to. predict
quantitative rainfall rates: This study develops a stochastic model for short-term (of the order of 1 hour
or less) rainfall prediction. The model simultaneously predxcts rainfall rates at multiple locations and for
‘multiple values of prediction lead. All model parameters are estimated solely from telemetered rain gage
" data for the event being predicted. The model includes velocity and direction of storm movement as ex-
plicit parameters. The storm arrival time at each predicted point is likewise an explicit parameter, which
is estimated for each location. The mean rainfall rate is not modeled as being either homogeneous spa-

* tally or stanonary (constam wnh txme) Lnkewme, the variance of rainfall is nonhomogeneous and non-
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INTRODUCTIDN

In increasing numbers. urban. cemers are unpiememmg S0-

phisticated real-time control systems for their combined and.

storm sewers [Labadie er al., 1975] The ability of these control
systems to respond qulckly to the characteristics of a precipi-
tation event increases the value of a short-term rainfall predic:
-tion. In this context, Gngg et al. [1974] have stated, ‘Real-time
control requires that estimates of interior and overall storm
- parameters be made. These estimates may be updated as the
storm progresses in time as actual data becomes available and
their uncertainty wxll thus decrease. However, the uncertainty
will never reach zero until the particular event is over, thus
‘the best level of performance obtained is directly related to
;storm prediction capability.”

Ideally, the controi system should take advantage of the
temporal and spatial variability of rainfall/runoff to allocate
its hydraulic resources (for example. storage, flow capacity.
and treatment capacity) in an optimal fashion. For example; it
should be possible to identify the optimal time to use limited

storage capacity to avoid overflows or local flooding. It should - ‘

be possible to trade upstream and downstream resources, for
exampie, 10 use upstream. storage to decrease the load on an

overloaded downstream line. This kind of control behavior is

dependent on the ability to ammpate future flows: thh spanal
and temporal detail.

In this paper a model for quanmanve short-term ramfall :
predlctmn that could be used in this and other applications is.
described. Predictions are made at multiple points to provide

some degree of spatial detail and at multiple values of time

lead, to provide a degree of temporal detail. The model is

nonstationary in structure. The need for a nonstationary rain-
~ fall-forecasting model has been prevmusly recogmzed by
Jamieson and Wilkinson [1972).

Besides nonstationarity a successful rainfall predu:non

scheme requires (1) assumptions about the structure of rain-

fall, (2) a mathematical model consistent with the assumed
structure, and (3) a procedure to estimate the parameters of

- the mathematical model. The task is to develop a model
whxch has a rich enough stmcmre to reproduce the unportant «
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fall is developed Let

elements of ramfall but is sunple enough to allow parameter
esumalmn

CHOICE OF MODEL

Throughom thls paper, rainfall is modeled as a non-
stationary process. In particular, the mean and variance of

- rainfall are not temporally or spatially constant.

- The obvious d:sadvantage of a nonstationary model i is the
need to describe and estimate the parameters of the non-
stationarity. Postponmg for the moment the parameter esti-
mation problem. a nonstationary muluvanate model of rain-

i) =m) +r(0) S

where \ ‘ ‘

~i() ~ 'vector of N rainfall rates at time step ¢ at locations (x;,
Yoy (xza Yaks i (Xns yN)r

m{r) vector of mean values at time step #; -

r(r) - vector of residuals at time step ;- :
N number of rain gages in the prediction scheme.

It is notanonally convenient to define a dxagonal standard
deviation matrix 2(1) with the form ! : :

“u(x,,y,,:t) 0 000

L : 0 G(x 2 V25 t) 0 0
Z() = : ~ . : :
: ; 0 : :
0. 0 ol ym )
Using this deﬁce : : : L e
‘ )=S0y @

where &(f) is a zero: mean, unit variance, random veetor proc-
ess.

. The heart of any. ramfall predxcnon scheme is the assumed
form of the dynamic behavior of rainfall—how it evolves in

time. From (1) the evolution of rainfall in time has two com-

ponents, changes in the mean vaine and changes in the resxd-

ual.
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The mean value vector m(!) is assumed to change with time
ina determm;suc but unknown‘ fashion. The method. pro-
posed to estimate the time-varying mean vector for presem
- and future times will be discussed later. Assume, for the mo-

- ment, that both the mean vector m(f) and the standard devia-

tion matrix (1) are known for ail time steps

~ At issue in this section is the dynamics of the res:dual term
r(1). The residual will be assumed to evolve in time according
toa nonstauonary Markov madel of the form

f(t +71)=
- where
Al 1)
. sition 7 steps into the future;

N X | vector of disturbances with zero mean value

NXN matrix giving the effect of the noise 1erms at.
time step 7 on the residuals at time step 1 + 7.

w(t, 1)
B(1, 7)

Equatmn 3 is somewhat unusual for including a depen-
dence of 4, B, and w on the 1ead value 7. This is necessary be-
cause of the intention to produce rainfall predxcuons at mul-
tiple values of lead.

At each time step, measured values of rainfall rate are avail- =

able at a numbcr of points where rain gages are located. The
N points at which predictions are to be made form a subset of
the entire rain gage network. For these prediction pomts a
measuremem equatmn is wrmen

=AM @)
where . :

q@)
m{)
(1)

N X 1 vector of observed rainfall;

N X L vector of mean values; =~

N X 1 vector of true values of residual:
¥(1) N X | vector of measurement errors;
Z(t) N X1 vector of measured residuals;
N number of points predicted.

- It is assumed that the state noise is uncorrelated in time and is
" uncorrelated with the measurement noise and the measure-
ment. noise is uncorrelated in time. *

Equations (3) and (4) form the classic framework for the
discrete Kalman filter. The derivation is available in many
standard texts on estimation {e.g., Sage and Melsa, 1971; Gelb,
1974} and will not be repeated here. The only complication in

the present case is the consideration of ‘mutltiple-lead: predic-

tions. The ﬁiter equauons are written fora one-step lead as
r(i + ljt) = A(t l) r(t! ) (5
P+ 1) = A, I)P(tit)Ar(l 1)+ B(t, HEw(, l)wT(:. bl
- BY(t, 1) = AG, l}P{ilt)AT(t 1) + Q(t, i) (6)

K(r) = P(tt—- l){P(t[t - D+ E[v(t)v"(z)} ! ()
: ;(:;:)-:(z]:- 1) + K@) {z(t) — (et — no®
P(tit) = {I K@)} P(t|t — l) L )

where Halt) denotes the linear minimum variance estimate of

the true residual vector r(z,), based on all mformauon avaﬁ—
‘able up to time step 7.
-And

P = EIEOI0)= 102) (i) = ()]

A(l 'r) () + B(t, 1) w(t Ty s (3) :

NXN state transition matrix at time step t for a tran‘ o

(10)

In words. P(1,]t,) is the error covariance matrix for the esti-

mate of r(z,) made at time step 1. K(#) is cailed the Kalman a
- gain matrix. To sunphfy notation.. the Q(z Ty mamx has heen

deﬁned as . ;
Q(z =BG, 7)E[w(t T)wf(: DB LT (D)
Itisthe Q(z 7) matrix and not B(t ~r) alcne whnch is lmponam .

to the prediction.
In addition, it is necessary 10 deﬁne starting conditions

~ P(0|0) and r(OtO) This is reasonably straightforward. The ini-

tial state estimate is taken as the observation before the begin-

- ning of rainfall. Therefore the initial estimate of the residual is

£(0[0) = 0, leading to an initial state error equal m the mea-
surement error. i.e.. P(00) = E[v(0)v"(0)]. ~
Equations (5)-(9) provide the minimum variance estimate

of the current residual (equation (8)), the error covariance ma-

trix of the esumate of the current residual (equauon (9)). the
minimum variance linear prediction of the residual one time
step from now (equation (5)), and the error covariance matrix
of the one-step prediction (equation (6)). The equations oper- -
ate recursively; that is, xhey process only one time step of mea-
surements at a time. ‘ ;
Predictions at the other leads require two new cquanons to
be mtroduced ‘

(12
(13)

| R+ T1 )= A(z. ™) KD
P(t + 7in) = A(1, T)P(t]z‘)A ’(: N+ 0T
‘ The ramfall prediction at any future time 1 + 7 1sg1veri‘by’
o i(t+7|t) =;=k m(t‘ +1) +F+ 1) k (14)

The error covariance mamx of this predxcuon is given by
Pt + 7| t) (assummg that m(t + 1-) is known w:th cenamty)
‘The quantity {z(s) = &t = 1)} in(8) is called the in:

‘novation vector-—it is the dlﬁ'erence between the measurcd re-

sidual and its predicted value.
Expanding the innovation expressu)n

{z(t) — itfe — 1)) = {a® — m(t) — r(tit =y

The above depends on the tune-varymg mean vector m(f).
As will be seen later, m(1) is estimated exogenously to the fil-
tering algorithm. The innovation (equanon (15)) is then ap-

- (15)

ﬁ proxunated by

9(0) = (o) = At~ o

Operanonally, no error will be assoclaied with the mean es-
timate m(tr). ‘As will be seen. dimensionality. uncertain dy-
namics, and variable states prevem mclusmn of the unknown 9

. mean among the state variables.

PARAMETER REQUIREMENTS
In order to unpiemem the prediction scheme it is necessary

~ to estimate two matrices describing the dynamics of the rain-
- fall residuals at each time step and prediction lead, A(t, 7) and

Q(t, 7). First, recall the definition of Q(1, 7) (equation (11))
and also the state dynamic equation (equaucn 3).

The assumptlon that Elw(t, 7)] = 0 has been smted pre-
vmusly It is necessary to add here that Elw(z, 7) r” =0

By posxmuluplymg both sndes of (3) by r’(1) and 1akmg ex-
pected values of the resultmg equanon itis easy m show that
A(t. 1)1 15 given by ‘ ~ !

A= (¢ + 7)Ele(t + T)ET(;)KE{E(:)J(:)])-' 2(2)'“ ‘ (l6) ~
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Imroducmg 1he notation

D@, 1) = E‘Ie(tl)‘fr(t’)] (”)

for the covariance of the xmrmahzed resxduals allows (16) to
be written compactly as : S

A(t, =2Z(+ T)D(i +, z)D(z H 'E(t)“‘ (18)

: Equatmn (18) is me framework for esmnatlon of A(t, r}, k

provided Z(1)~' and D(t, 1)"" exist. The procedure used to esti-
mate D(1, 1) guarantees the existence of the inverse, as will be
briefly seen later. The Z(1) is a diagonal matrix with diagonal

terms equal to the standard deviation of the elements of the -
residual vector r(z). The difficulty is that some element of r(z}
mxght have zero variance. In this case, the corresponding col-

~umn of A(t, ) will be taken to be a unit vector, i.e., all zeroes

exoept a value of 1 on the diagonal of A(z, ). For example,

when 2(2) is a zero matrix, A(f; 7) is an identity matrix.

When can rainfall have a vanance of zero? One reasonable
answer is that rainfall has a mean value of zero and a variance
of zero when it is surely not raining. The followmg assump-

tions are made for the sake of a reasonable view of rainfall: (1) -

When the mean value of rainfall is zero, the variance is also
~zero and (2) when the variance of rainfall is zero. the mean
value is also zero. Using these two assumpnons, whenever an
element of r(t) has zero variance, that element is xdenucally

zero. Notice that the above argument applies to the model of

rainfall ‘reality.’ It is not in contradiction to the initial esti-
- mate assumptions given in the previous section.
Postmultiplying (3) by itself transposed takmg ex-
. pectations, and solving for Q(t, 1) yield

Q1) =2t + 1D(t+ 7,1 + )T + 7)

= A(x, 2D, HET(HAT(, 7)

Subsmutmg (18) for A(t 1) and droppmg the transpose
from symmemc matrices give

o, 1) =2t + (D@ + . f+'r) ;
=D+ 0D, )~ D7(t + 7, :;} S(t+1) (0

Equanon (20) prov1des the framework for esnmauon of O(t,
). :

In order to unplemem the ramfall prediction method de-

scribed above it is necessary to know the following: (1) mea-
~ sured rainfall at each prediction point at the current time step

(q(t)), (2) the mean value of rainfall at each prediction point

for the current time step (m(2)) and for all predicted time steps

_(m(z + 7)), (3) The standard deviation of rainfall at each pre-

diction point for the current time step (.
dlcted time steps (o(z + 1')) (4) the measuremenx €ITOor covari-
- -ance matrix E[v(f)v’(1)], and (5) the covariance matrix of the

- normalized residuals at each prediction point for the current..

time step with itself (D(t, 1)), for each predicted time step with

itself (D(¢t + 7, t + 7)), and for each predicted time step wn.h

the current time step (D(t + 7, t)) :

- Estimation and prediction of the mean and variance will be

" discussed in some detail later in the paper. Obtaining the nor-
malized residuals covariance matrix at various lags is a major

_and important step. The covariance is a function of storm ve-

locity. Johnson and Bras [1978b] discuss the details of all the

" ‘estimation problems and compare the performance of several
methodologxes Thls ‘paper wdl bneﬂy present the selected
. size is 3 for each storm counter from 1 through 15, 2 for storm

proeedure

(19)

) and for an pre- ‘

" ‘Mean and Variance E,mmanon

Besides a physwal model of ramfall there are two basxc sta-
tistical approaches to esumanng the nonstationary mean and
variance required by the model. A multirealization approach
assumes that the current rainfall event is a member of a class

- of rainfall events all with the same mean and variance func‘

tion. Takmg a multirealization ‘approach requires a scheme

for classifying events and 1dem1fymg the event class of each

pameular event a priori for predxeuon purposes. Any parame-

. ter of the mean and variance function of each class of events
- would also have to be estimated a priori for each event. :

A single-realization approach assumes that each event is
unique. As a result no scheme is needed to classify events.

This is an advantage for two reasons: there is no need to proc-

ess historical data and there is no predlcuon error mtroduced :
‘by misclassification. :
The technigue used to estimate the nonstatmnarv mean and

- variance of rainfall is a single-realization approach called the

storm counter method. It depends on one fundamental as-
sumptmn in relation to the time that a storm arrives at a loca-
tion the time history of the mean and variance is 1denucal for
ail 1ocat10ns It is not assumed that the storm will arrive at all

locations, for exampie, convective cells mlght completelv miss
_some points:

Data from rain gagcs are recorded in dlscrete time steps.
The storm counter records the number of time steps since the
start of rainfall at each rain gage. The process of assigning

_ storm counters is illustrated in Figure 1. The clock time is 3:00

P.M. Data are collected every 12 min. At 3:00 P.M: it has
rained at three rain gages (numbers 4, 6, and 9). Rainfall be-
gan at 9:36. A.M. at gage 6, so gage 6 has a storm counter of

'27. The storm counter for gage 4 is 15; for gage 9, itis 21.

- The mean and variance can be estimated for each storm
counter using the common statistical expressmn for the
sample mean and variance: :

it = -

n(s)

Z 4 (m, )l

i :}#0

@n

where

m(s). ‘estimate of mean rainfall rate for storm counter s

Cn(s) number of gages with storm counter at least as hxgh as
5, i.e., sample size for storm counter s
- 1(i, 5) indexing function giving time step for storm counter s
- at gage i (If storm counter s at gage 1s not available,
i, sy =0.);
g{t) - measured rainfall rate at gage rattime step f;
M total number of gagcs in rain gage network
6l(s) = ;(—s;—-—— 2 1a.6G, s» = m(s)}’ (22,

m s)#-ﬂ

where d(s) is the est;.mated vanancc of ramfali rate for storm
counters.

It is acknowledged that 1he variance estimated by (22) is
bxased since ¢(z) includes an uncorrelated sampling error with

‘given variance. In relative terms this bias is minor and is cer-

tainly within the uncertainty of the estimation of the mean.

Compensating the result for the known measurement error

variance was not considered a worthwhile exercise.

counter to another. In the case shown in Figure | the sample

The sample size n(s) may vary considerably from one storm
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Fig. 1.

counters 16 through 21, 1 for storm counters 22 through 27,
and no sample is avaﬂable at ali for storm counters 28 or
higher.
. The storm counter method is-easy to explam and to u'nple-
“ment. For the prediction problem it is hoped that it will begin
to rain first at gages outside the prediction area so that a
sample will be available to predict the mean at the prediction
points. For the case shown in Figure 1 a sample size of 2 is
available to estimate and predict the mean and variance of
" rainfall at gage 4 for the next 6 time steps (tlme steps. 28-33,
storm counters 16-21).
Certain effects are ignored by the storm counter method
For example, the storm counter method does not consider
- orographic effects or storm aging (i.e., variations of the storm
in real time). The basicidea in using a nonstationary mean is
that the mean function will capture some of the structure of
the event. Ignoring some structural details places a héavier
burden on the stochastic components of the prediction

scheme. By ignoring orographic effects or storm aging the
~ storm counter method produces higher estimates of the non-

stationary variance than a model which accurately includes
these effects. However, an inaccurate orographic model might

have hlgher variance than the simple storm counter method,

likewise for an inaccurate model of any type of storm struc-
ture. Simuitaneous occurrence of more than one storm over
‘the area cannot be satisfactorily handled by the mcihodoiogy

. The storm counter method will produce a mean function
‘that captures more of the structure of some types of events
(for example, a frontal storm) than of others (for example, sta-
tionary cells). Likewise, the prediction scheme as a whole will
perform better for some types of events than for others. The
important point is that the storm counter method does not re-
quire a particular type of event or unpese a pamcular spaual
structure.

Estimation of. the unknewn nonstatwnarv mean funcuon
within the Kalman filter algorithm is not possible. State aug-
mcmauon which mcludes the mean (together ‘with ‘rainfall

Hlustration of storm countcr method.

and residual) will Icad to.an unobservable system. It is impos-
sible to distinguish between mean and residual when the
available observation is their sum [Gelb, 1974, pp. 69-70].

State augmentation would also lead to essentially a 3-fold in-
crease in dimension of the state vector. When forecasts are:
needed at several stations, the numerical problem would be
tremendous. In particular. notice that the storm counter -
method utilizes all stations in computing the nonstationary

‘mean (and variance). The state-space formulation only in-

cludes the gages to be forecasted. The authors are not familiar
with any way to formulate the time dependent dynamics of
the mean to include its estimation within the filtering frame-
work and still use all available data. :

In applying the storm counter method to the prediction
problem it is sometimes necessary to estimate the mean and
variance for storm counters with no sample and to estimate
the storm counter itself at gages where it has not yet rained.

For example, suppose that a ﬁv&-step prediction is bemg
made for the three gages deplcted in Figure 1 (five steps equal
1 hour). An estimate is needed for the mean and variance of
rainfall at gages 4. 6, and 9 at 4:00 (1 hour later). The required
storm counters are 20 for gage 4, 26 for gage 9, and 32 for
gage 6. The sample sizes are 2 for storm counter 20, 1 for

storm counter 26. and zero for storm counter 32.

To estimate the mean and variance for a storm couuter with

‘ small (or zero) samples, data from adjacent storm counters is
. added until an acceptable sample size is reached. A lower
limit on ‘acceptable sample size must be set. If a storm counter

n has a sample size smaller than the minimum allowed. the
sample values for the next higher and next lower storm coun-
ters are included (n = 1). The process is repeated (n+2n+

-+ ) until the minimum sample size is achieved. A very
largc minimum sample size would force all storm counters to
have the same mean and vanance, 1 €., a statmnary mean and

5 V&ﬂﬂﬂCﬁ. :

In order to predlci the mean or variance usmg the storm

‘conmer method it is neccssarv to know the value of the storm
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~ counter for the point being i)redicted if it‘has begun 1o rain at

the predlctmn point, the storm counter is simply the number
~of time steps since it started to rain. If it has not started to
Tain, it is necessary to esnmaw the time when it will bcgm to

rain. In the storm counter framework, esnmanon of storm ar-

rival is equwalem to estunatxon of the ‘value of negauve storm

~counters.
- Several techniques were mvesngated to esumate storm ara

‘ nval They all have in common a fairly high uncertainty in
the estimated arrival time. The methods tried fall into two

broad categorneS' storm. velocity methcds and regressmni

methods.

The storm veloc:ty is esiunated as part of the prediction
scheme [see Johnson and Bras, 1978b]. The storm velocity de-
fines an ‘upwind’ direction from each location where the

_storm arrival must be estimated. Looking along the upwmd

dlrecuon, the storm front might be found and its arrival time
 estimated. Estimating storm arrival with a velocity method re-
quires a degree of spatial detail that was not available for the

rain gage networks that form the test cases, and these net-

: ;warks are quite dense.

It is desirable to have a measure of uncenamty n the storm :

“arrival predlcuon schemes. The chosen methodology follows.

Since it_has rained at some locations. there will be some

points with positive storm counters. These pomts can be used
to esumate the parameters of an equation

‘iLk-‘-a,,+a.x+aly,+e : (23)

where
- L, storm counter at ith gage;
X, y;  location of ith gage;

e erroratith gage.

The esnmated parameters can be used to estimate the storm
counter at gages where it has not yet rained. Presumably, the

: predxcted storm counter will not be positive at locations where

it has not rained yet. It should be emphasized that the regres-
sion method requires an extrapolation of the function chosen,
i.e.. parameters will be estimated from gages with positive
storm: counters and extrapolated to locatmns with negauve
storm counters. :

Naturally, (23) will describe storm a.mval better for some
types of events (for example, frontal storms) than for others
{(for example, convective cells). In essence, it is difficult to pre-
dict the arrival of a ‘rough’ or cell-type storm, and this diffi-

 culty will be reflected in the goodness of fit of (23). The model

~ accounts for the uncenamty in the predxcted storm arrival in

the following way. The mean value (and vanance) at a predic- .
tion point where it has not rained is found as a welghted sum

of the mean vaiues (variance) from a number of storm coun-

ters. The storm counters conmdered are centered about the es-
 timate from (23) and extend two standard errors away from
that estimate. The weights are from a normal density function

 centered at L, from (23). Any positive storm counter values -

are ignored (the storm is known not to have arrived).

-Occasionally, it may. happen that all the values within two
standard errors of (23) are positive; i.e., it should already be

raining. In these cases the storm is consuiered to have ‘missed’

the predxctmn point; the storm counter 1s consxdered to be :

*'*00' i.e.;the storm will never arrive.

The eﬁ'ect of usmg a weighted mean and vananee mstead of :
a smgle esnma!e is to *hedge’ the uncertainty in storm arrival. -
When {23) pmduces a very good fit, the storm counters con-

storm dlstancc d, defined

177

‘sadered wdl faﬂ in a narrow band about th: esurnate !mm‘

(23). When (23) ﬁls poorly, more storm coumer vaiues wﬂl bek
mcluded in zhe ‘weighted mean. ~

Estzmauon of the Covanance ef Normalzzed Re.uduais .

A complete discussion of the possible altemanves of covari-
ance estimation in real time can be found in the work of John-.
son and Bras | 1978b). For the examples presented in this paper
a funcnonal covariance form was assumed. requmng parame~ :

: ter estimation in real time.

It is reasonable to assume that for. any time lag 1 the covari- k
ance of the nonnahzed residuals will have a maximum value
at some particular offsets (Ax,..(7), A¥mix(7)). For lag zero,

Ax e = Avm, = 0; i.e.. the covariance function has a maxi-

mum at the origin. If the storm is moving, it should be less

_variable in the coordinate system that moves with the storm

than in a coordinate system fixed to the ground This argues

that rela.uve maxuna will all be in a straight lme. ie.,
: m,‘(T) = U T, o
(24
Avmax(,r)

where U is the x—dn'ecnon component of storm velocxty and
U, is the y-direction companem of storm velocity. There is

evndence of this behavior in ramfail [Marshall 1977 Za-

wadski, 1973).
Equation (24) assumes that the storm velocny components‘
aré constant. If the storm velocity varies with time, the effect

- on the covariance is quite complex. A variable storm velocity
does ‘more than simply relocate the covariance maxima at

each lag so that they are no longer collinear. A variable storm
velocity implies that the location of covariance maxima are 2
function of absolute time, not just time lag. In short‘ variable

“storm velocity implies nonstationarity of the covariance,

which would make its estimation much more difficult.

If the covariance decreases uniformly in all directions from
the maxima defined by {24), it is isotropic in a «coordinate sys-
tem that moves with the storm. It is important to realize that
isotropy in the moving coordmates implies anisotropy: in a-
fixed coordinate system. The hope is that the storm’s move-
ment is the major source of anisotropy. i

The distance from the maxima of (24) is measured bv the =

d(xn yn t!s x]! y)s tZ) = {[(xr xtl‘)k - ( T U tl)]

A0 U 1) - U;::W} e

= {[Ax, — U Hi\yu

o UT 12} 12 = (25) ]

In essence. the use of the storm distance reduces the dimen-

sionality of the estimation. There are a variety of valid iso-
tropic covariance functions [Mejia and Rodrigue:z- -Iturbe, 1974;
Bras and Rodriguez-Iturbe, 1976]. The covariance function
used for this study is the exponential

(26)

Therefore at each. predlctmn lead 7, two parameters must be

E{E(‘xl; yn t+ T)E(Xp y/, I)] = ak e"ﬂvﬂ‘;h

- estimated, a, and .. Also required are esumates of U and
U, the storm velocity componems

 Clearly, the ideal approach wouid be to esumate all the co-
vanance parameters sunnitaneousiy, at least, U,, U, Aoy Bos ‘



 u

ay, and 13: Ina multﬁead predxcuon fcrmax other height and
. decay parameters must be added to the list. The 6-parameter
(or 8 or 10 or more) nonlinear estimation problem is formi-
dable, especially when it must be solved in real time.

The problem can be greatly simplified if independent eSu- =
mates of U, and U, are available, and this is the approach
taken here. With U, and U assumed known (velocuy estima-'

tion will be discussed later), the covariance parameters «, and

B, can be estunated separately for each lag r. The following

constraints must be imposed on a, and 8, to. msure the vahd—
ity of (26), &, = 0, a. = &y, and B, > 0. : 5

The procedure used to estimate the covanance parameters

a, and B, is the followmg, define

m o
27
34
 where :
~m,  estimate of mean at gage J at nme step ! (from storm
counter method);

46, ' estimate of siandard deviation at gage J at time step t
. (from storm counter method);

g, rainfall rate (measured) at gage jat time step ©;
€ esumatc of normahzed residual at gage Jjat time step 1.

If it has not rained at gagc J at time step ¢, then m,, is zero and ]

d, is undefined. The covariance estimation scheme must ac-
count for these undeﬁned values.
‘Sample covariance values are estunated bv the foilowmg

equation:
K - i l ‘1;}(55") : i . ;
e m =Tyt Stenr O @8
~where = i !

c’,,-, estlmates of covariance between gage i and gage Jat

lag 7;

length of shortest record at gage i or j, i.e., maximum

-number of data values included in ¢, at any lag 7;

153, , 1), T5(i, j, v)  start and end time steps so that ail é,,,
and €, in (28) exist.

Y
4
YiiT s
(a- )
- d
.
i ) — X
X

; Fig. 2. Storm pass‘ingk:ov‘er gages : and j {fro‘i'h Marshall, 1977]. f

: Expanding cos (a — 0) gives“ e
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The quanmv T. o= Ty gwes Lhe ‘number of data vaiues in- j ;

cluded i in a pamcular esmnate c,,,, deﬁned

i11- = TB(‘*]’ 7) S Tz(lajs T) - (29)

Presumably, those vlues of ¢ €y, correspondmg to large n,. are
more accurate on the average, so they should receive a. higher
wexght in the procedure used to estunaie a, and B A welgh-

. ted sum of squares is formed

ﬂa,;~/3,) = 2 ‘

6
Crallg ‘

Cally &y

— Py (30)“

The estimates of a; ‘and 6 are then deﬁned as the values
whlch rmmmxze (30)

an

: &-n - mm ¢(ar$ B'r)
i a8y

The solution of (31) is a Straightforward problem in nonhncaf :
optimization solved via a Newton- -Raphson technique. Hav-

mg estunated the covariance parameters &, and B3, forr=10.1,

, it is a simple matter to produce the necessary covariance
matrices D(t, 1), D(t + 7.t + 7), and D(z + 1, 1). Of course. the
storm distance cannot bc compu{ed unless the storm veiocuv
isknown, ~

Storm Veloczty Estimation

It is:difficult to estimate the storm veiocny from pomt data
[see Johnson and Bras, 1978b). Trying to find the cross-covari-
ance maxima leads to a h:gh—order nonlinear parameter esti-
mation problem. Rain gage data lack the spaual resolution to
track storm patterns accurately. What is required is a linear

- estimation technique that relies on the temporal (not spanal)

detail of rain gage records. ;
It is possible to estimate the storm velocny via a hnear re-
gression. The approach was first used by Marshail [1977] and

- has been applied by at least one other mvesugaior {Shearman,

1977}

Referring to Figure 2, conmder tworain gages fandj, a dis-
tance d apart. A storm from direction 6 moving at speed ¥ will
take 1, to travel between i and J in the dxrecuou of storm

- movement where

. dcoS(aFH)' - ; Lo
t,j‘- T o (32)

cos@ . isml o cosd

paed o b o vosd o sind
v e v ey nt v ;
‘ : =by;+bx, (33)
where : : e : o
x, = (x, — x,) equals the xdi;ection distance from gage i to
- gage ) ;
=0 =0

V “magnitude of storm velocity;
8 direction of storm movement (from north axns)

If 1, can be estimated from the rain ‘gage data, then the pa-
rameters of (33) can be estimated from linear regression.
From the esumated paramewrs b, and b,, estunates of ¥ and 4
are found
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§7= (b2 + 6,312 X
é tan (bz/l;;}

(34
35)
as
U ‘=‘ - I?si.n 4
U,= Vcosﬁ

- G6)
37

How should t; be estxmated” The basxc 1dea is to find the

best match between the rainfall records at gages i and j: The

time lag giving the best match is used to estimate t,. Marshall

[1977] uses the cross-correlancn function as a matching crite-
_rion. The authors use a slightly different matching criterion
based on absolute differences, which offers computational ad-

vantages [Johnson and Bras, 1978b]. No matter what criterion

“is used, it will not always determine the true value of 1,. Since
the sample size tends to be large and the computational effort
high it is reasonable to avoid estimates which are likely to be
in error. Several criteria were established to try to improve the

“ quality of the sample used to estimate (33) Robust regression :
was used to handle the occurrence of outliers. The velocity es-

timation performed well in both synthetic and real storm data.
The interested reader is referred to:the work by Johnson and

Bras [1978b] for a detanled discussion of the procedure and its
~behav1or

; EXAMPLES AND RESULTS
Measures of Effectiveness

A variety of statistics can be computed which measure the
.accuracy or goodness of the prediction. Two commonly used

statistics are the root mean square of the errors (rmse) and the

coefficient of efficiency (CE). Then rmse is simply
‘ . : 71 : 12
rmse -—~(-T-Z é‘k) .‘

where ¢, is the prediction error observed at time 7 and T is the
number of time steps.

The coefficient of efficiency is a measure of the variance ex-
plamed by the predlcuon and is computed via

(38)

Var ) (39)

~where Var (i) is the variance of the ramfall at a given point.
The statistic CE is similar to the multiple correlation coeffi-
cxent of linear regression (Rz) Both measure a percemage of

.

Gage Location

Prediction
Point

KM
T T
0.} 20345

~ Fig. 3 Synthetic storm gagc lccauons.‘ ;

Fmally, the two storm veiocny components can bc estimated

- .
+ 'Goge Location =

Prediction e o » KM
Point : : g ;

T
02468

: Fig. 4. Metromex gage locations.

v~arianée explained. The R? of linear regression always falls

“between 0.0 and 1.0. Likewise, CE has an upper bound of 1.0,

but it does not have a lower bound; i.e., negative CE values
are possible. In this context a negative value of CE indicates
that the predictions: have a higher variance ‘than the actual
rainfall. This occurs in some of the test cases. If it never :ains.
i.e., r, =0 for all 7, then CE is undefined.

The underiymg problem ‘with the CE and rmse- stausucs is
that they treat errors at all time steps equally. Thxs is perfectlv ~

+ Gage lLocation Vs & N
Prediction S A :
‘Puim

KM
Sieumun)
0 510

k Fkig‘ 5. Chickasha gage locations.
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ACTUAL
PREDICTION
MEAN
STD. ERROR

b A

1

- . 3 H .
0 10 20 30, 40

o T ) — " T 1
] 60 70 80 80 a0

TIME STEP

Fig. 6. ‘Synthetic gage 16 lead l

reasonable for a stauonary process ‘but rainfall is a transient
~process. The CE and rmse statistics are reported in the interest
~ of allowing simple quantitative comparisons to be made.
Rather than design more complicated statistics to measure the
response of the prediction model, results will be presemed in
graphical form. There are four values shown on each plot: (1)
the actual rainfall rate, (2) the predicted rainfall rate, (3) the
‘ predlcted mean value of the rainfall rate as computed by the

1

RMSE
Ch

3.47

0.893

0

50.0 —
40.0 -
3ofo-k
20.0-

10:.0+

RAINFALL (MM/HR)

0.0 —{ =aw

-10.0-

storm counter method. and (4) the standard error of the pre-

‘diction. The standard error comes from the prediction error

covariance matrix, P(t + it (equation (13)). When a single

~gage is considered, the standard error is simply the square

root of the corresponding diagonal term of P(1 + =it). ;
It is impractical to present a large number of results in a

journal article. A more extensive discussion of test results for

more storms can be found in the work of Johnson and Bras

ACTUAL
PREDICTION
“MEAN

- 5TD. ERROR

X 4+

- T  ~‘ s - " -
0 10 20 30 40

TIﬁE STEP

; o = = 1
%o : %o 70 80 B0 100

Flg 7 Symhenc gagc 16 leadé
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5.€3
0.510

i

RMSE

|

RAINFALL (MM/HR)
7

=10.0-
=20.0

-30.0+

ACTUAL
PREDICTION
MEAN
- STD. ERROR

X+

T T T i | o
0 0 20 30 40

- TIME STEP

T T T T T 1o
§0 60 70 80 80 100

Fig. 8: . CK060162 gage 87 lead 1.

[1978a]. The results presented here show single gages only,
even though the multivariate nature of the model allows areal
average predictions to be made. Because predictions are avail-
able at multiple leads, total volume predictions can also be
made [see Johnson and Bras, 1978a]

Data Sources ;

The rainfall data used in the test cases below come from
three sources: a rainfall synthesis model [Bras and Rodriguez-

Iturbe, 1976], the Southern Great Plains Watershed Re‘search‘

_Center in Chickasha, Oklahoma, and Project Metromex, 1Li-

nois State Water Survey, Urbana, Illinois.

The synthetic event was sampled at 5-min time steps at the
36 rain gages shown in Figure 3.

The Metromex network is shown in Figure 4. There are 200
gages in this network with full records available. The gages
are standard National Weather Service weighing bucket
gages,k nearly all with 24-hour charts (J. L. Vogel,‘perksqnal

RMSE =.10.69 4 ACTUARL -
CE = 0.248 + PREDICTION
X MEAN
- STD. ERROR
60.0+ : ‘
50.04
AN
o
T 40.0+
E ;
30.0
2 "
N
3 2004
j:
g 1004
e
= 0.0
= 1
c -10.04 -
~20.0- ‘ -
-30.0
o T Y - 3 — " ) - i ;
0 10 20 ':aa '«w so : 550 i r','o g la‘o 3 ;;au ,lxnu
e - TIME STEFR

Fi 1g 9. CK060162 gage 87 lead 2.



182

RAINFALL (MM/HR)

RMSE = 11.22

CE = 0169
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‘10.0‘-

0.0 {nm
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~20.0

=30.0 94
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ACTUAL
PREDICTION

X + b

it

20 30 40 0 60 70 =0 s0 100
TIME STEP »

Fig. 10. CKO060162 gage 87 lead 12.

communication; 1977). The da!a were already available in 5_, Synthetic Event
~min rainfall rates. ‘ ;

The Chickasha network is shown in Flgure 5. There are 142 The' rainfall synthesis model {Bras and Rodriguez-Iturbe,
gages having full records for both test storms. The Chickasha  1976] produces events with precisely the characteristics as-
network also uses weighing bucket gages. Data were obtained ~ sumed in the parameter estimation process. The mean and
in breakpomt form and convened to 5-min rainfall rates. variance are nonstationary and are identical at each gage in

RAINFALL (MM/HR)

“RMSE = . 0,78
CE = 0.648

18.0
5y

16.0 4
14.0
12.0 -
10.0
8.0
6.0; '
e
2.0 4
0.0 4»

-2.0

ACTUAL
PREDICTION
MEAN

STD. ERROR

X+ b

1

T 7 o - T k T o : 1
10 5 20 : 30 40 50 60 70 B0

o TIME STEP
Fig. 11. MMO8I375 gage 111 lead 1.
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CRMSE = 2.03

CE = =127

18.0
1604
12,0 4
1004
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RAINFALL (MM/HR)

2.0

0.0 4

=2.0-

ACTUAL
PREDICTION
© X MEAN . :
- STD. ERROR

X o+

T T
40 S0 60 7ol R

TIME STEP
Fig. 12. MMO81375 gage 111 lead 2.

relation to the time of storm arrival at that gage. The storm
‘has a constant velocity with an isotropic exponential covari-

“ance in the moving frame of reference. Good performance for

the synthetic event would indicate successful parameter esti-
mation and will test expected model behavior. - ‘

The locations of the gages for the synthetic storm have been
shown in Figure 3. Predictions were made at four gages (15,

il

RMSE
CE

1.34
0.005

0

8.0 .

14.0 4
14.0 -
12.df k

‘iofo—
8.0
6.0

A0

 RAINFALL (MM/HR)

2.0 -

0.0

-2.0 4

i %1 Xy T

16, 21, and 22) at lead values of 1, 2, 3, 4. 5, and 6 time steps

(5, 10, 15, 20, 25, and 30 min). Figures 6 and 7 show the pre-
- dictions for gage 16 at lead values of 1 and 6 time steps.

By almost any criterion the predictions are excellent. The
accuracy of the prediction is degraded at higher leads but not
severely. A number of other observations about model per-
formance are important. : :

ACTUAL
PREDICTION
MEAN

- STD. ERROR

X A

;9‘; 3 A0 20 30

40 . so .60 70 8o

TIME STER

~ Fig. 13. MMO81375 gage 111 lead 12.
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1. The mean value identified by the storm ‘counter method

captures a lot of the structure of this event. reducmg the bur--

den on the residual forecasting technique. e

- 2. The model does a ﬁne job of predtcimg storm amvai
for this case.
3. The model actually predlcts rather than fcllows me
rainfall, for examplc, notice the sharp dmp m rainfall rate at
time step 80 . ;

Szorm CK060! 62

Storm CK060162 occurred over: the Ch:ckasha neiwork
shown in Figure 5 on June 1, 1962. Predictions were made at
10 gages: 57. 71, 85, 86. 87, 89, 98 99, 123. and 149. Predic-
tions were made for leads of 1. 2, 3, 4,5, 6, and 12 time steps
(5, 10, 15, 20, 25, 30, and 60 min). ~

Figures 8-10 show predicted rainfall rates at gage 87 at

leads of 1, 2, and 12 time steps, respectively. The rough and

spiky nature of the hyetograph at gage 87 is characteristic of

the hyetographs at other gages. As a result, the covariance

decays rapidly. and higher lead values are not able to capture

~the finer structure of the hyetograph. Only the lead one pre-

_ diction is able to capture the spikes at time steps 74, 79-81,
and 83-85. However, the predictions at other leads do pro-
duce a reasonable ‘smoothed’ value of the measured rainfall.

Storm MMO0813 75

"The rain gage network for storm MMO81375 is shown in
Figure 4. Predictions were made at 10 gages (75, 78, 96, 111,
113, 114,130, 131, and 132) for seven lead values (1,2, 3,4, 5,
6, and 12). The storm is described as a ‘convective summer

storm with vanablhty in cell motion’ (J. L. Vogel, personal~

commumcatxon, 1977), and such a storm should be difficult to
predict.

The difficulty i is exemphﬁed bv the ramfau records at gages
130 and 131 (approxxmatelv 3 mi apart). It rains for 20 min at

gage 130, but it never rains at gage 131, ,

The linear model of storm arrival (equation (23)) fits storm
MMO081375 poorly. This forces the model to hedge against the
possibility of storm arrival. At gages such as 131, where it

“never rains, the model does eventually decide that the storm .
has missed the gage, but not before several nme steps with

positive rainfall rates are predicted.

‘Considering the difficulty inherent in predxctmg this storm,
the model performs well. Figures 11-13 show the response at
increasing leads at a single gage where it does eventually rain.
Notice the hedging behavior before storm arrival. Also notice

. the small value of the res;dual term; in most cases the predxc-
tion is equal to the predicted mean.

The lead 12 prediction at gage 111 (Flgure 13) Musirates ‘

~ two characteristics of model behavior. The first time step with
~enough data to try to predict storm arrivals is time step 8. At
that time the storm arrival fit is poor, 50 the model consxders
_the possibility of storm arrival at time steps 9, 10, 11, -+, 20, It
happens that the storm does arrive at step. 20, whlch makes
the prediction good for lead 12.
The second characteristic is more Tepresentative of general
model behavior. Notice that it is raining at gage 111 at time

step 20 (Figure 13). The predicted rainfall for time step‘ 32is

‘pracucally 'zero. The point is that the model recognizes the

short-lived nature of the convective event. Heavy rainfall rates
_in the present do not foreshadow heavy rainfall an hourin the

future for this type of storm, and the model recognizes this.

'JOHNSON AND BRAS:

RAINFALL PREDICTION

CONCLUSIONS

A ramfall prediction model has been developed whlch si-
‘multaneously predicts ramfau rates at multiple locations for
multiple values of prediction lead. All model parameters are
‘estimated solely from telemetered rain gage data for the event
being predicted [see Johnson and Bras, 1978b).

The model includes velocity and direction of storm move-
‘ment as exphcu parameters. The storm arrival time at each

. predicted point is likewise an explicit parameter, which is esti-
- mated a priori for each location. The mean rainfall rate is not

‘modeled as bemg either homogeneous spaually or stationary
-(constant with time). Likewise, the variance of ramfaﬂ is non-

. homogeneous and nonstationary.

The degree of prediction: difficulty varies from one evem to
another. Naturally, the performance of the predlcuon scheme
‘is dependent on the characteristics of the storm being pre-.
dicted. The most critical issue is the ability to predlct storm ar-
rival. The method used to estimate storm arrival times works
much better for some events than others; thus the prediction
accuracy early in the event varies. When the storm arrivals fit
the linear hypothems used. the model is able to predlct the
start of rainfall with some degree of accuracy (for example,
the synthetic event and storm CK060162): When storm arriv-
als do not fit a linear form well, the model hedges the uncer-

- tainty in storm ‘arrival and generally produces a reasonable.
although less accurate, prediction. ~

As expected. the accuracy of the prediction generally de- -
creases with increasing prediction lead. Except for very short -
predlcnon leads (for example, 5-10 min) it is unposs:ble to
capture the fine structure of rainfall variability. At high leads
the covariance decay is rapid enough that the predicted resid-
ual value is usually zero. As a result, the nonstationary mean
determines the structure of the forecast for higher leads.

_ Therefore the more the estimated mean value describes the
structure of the event, the better the forecast. The model is
able to recognize the short-lived nature of a convective event
(for example, MMOB 1375) and yet is able to produce a reason-
able smoothed out version of other types of events (for ex-
ample, CK060162) for higher lead prediction. :

‘The ability: of the model to predict the start of the storm
and the end of the storm is a direct result of the decision to use
a nonstationary model for storm behavior. The accuracy of
the prediction generally increases with real time. Assuming
that it rains at all predicted points, there is eventually no un-
certainty regarding the storm arrival time. As the storm pro-

~ceeds, more data are collected. allowing better parameter esti-
mates.

Early in the event, lmle daza is avaﬁ,able, and default values
must be assumed for some parameters—oparticularly, the co-
variance parameters. In the current study these default values

_were set rather arbitrarily, but experience with model appli-
cation would allow more appropriate choice of default values
and thus better behavior early in the event. Setting defaults is
particularly important for smaller networks, whlch provade
less storm data at each time step.

On the whole, the model performs well for me test cases
considered and appears to be computationally feasible for a
rain gage network of reasonable sw.e ~
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