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ABSTRACT

Johnson, E.R. and Bras, R.L., 1979. Real-time estimation of velocity and covariance struc-
ture of rainfall events using telemetered raingage data — a comparison of methods.
J. Hydrol., 44: 97—123.

Short-term rainfall prediction in time and space requires parameter estimation in real
time. This paper discusses several methods of using telemetric raingage data to estimate the
non-stationary mean and variance of a rainfall event. Similarly, real-time estimation of
residual covariance structure and storm velocity is discussed. The performance of the
suggested techniques are illustrated with examples. The parameter estimation corresponds
to a forecasting model developed by Johnson and Bras. The goal of this article is to inform
other researchers of the advantages and disadvantages of different methodologies for real-
time estimation of rainfall statistical characteristics.

INTRODUCTION

To implement a rainfall prediction scheme of the type presented by
Johnson and Bras (1978), it is necessary to describe the structure of the event.
For a stochastic model, a minimal description requires the mean function and
the covariance function.

Throughout this paper, it is assumed that a real-time forecasting model of
the following general form is being used:

ity = m(t) +r(d) 1)

where i(t) = vector of N rainfall rates at time ¢; m(¢) = vector of mean values
at time step t; r(t) = vector of residuals at time ¢; and N = number of raingages
in the prediction scheme.

There are two basic statistical approaches to estimating rainfall structure.
A multi-realization approach assumes that the current rainfall event is a mem-
ber of a class of rainfall events all with the same mean and variance function.
*¥To whom correspondence should be addressed.
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Taking a multi-realization approach requires a scheme for classifying events
and identifying in real time the class of each particular event.

A single-realization approach assumes that each event is unique. As a result,
no scheme is necessary to classify events and no error is introduced by pos-
sible misclassification in real time. All of the techniques investigated in this
paper are based on a single-realization assumption.

Different sources of data may make different estimation procedures
appropriate. This work assumes that information is collected from a network
of raingages which are interrogated at regular intervals.

ESTIMATION OF MEAN AND VARIANCE

Rainfall is a complex process; rates vary both in time and space. The
problem addressed here is to estimate the expected value of the rainfall rate
at particular locations at particular times, and the variance about that ex-
pected value. During rainfall prediction it will be necessary to estimate future
statistics of the rainfall event. Throughout this paper the term ‘“estimation”
will be used for past, present and future statistics.

It is apparent that some external information or assumption is required to
allow any estimation. If the mean value is allowed to vary arbitrarily over
space and time, then only one sample is available at any (x,y,t) and no
estimation is possible. In this section, several alternative assumptions for the
structure of the mean and variance function are examined. In general, the
discussion will focus on estimation of the mean, although the final form of
the estimation procedure will be used to estimate both the mean and variance.

The simplest assumption would be that the mean and variance are station-

“ary for the duration of the rainfall event, i.e.:

m(x,y,t) = m and o(x,y,t) = o (2), (3)

Assuming stationarity greatly simplifies the problem of estimating the mean
and variance functions; every sampled value for the current storm can be
used in the estimation procedure. If rainfall is stationary in the mean for the
duration of the event, then the rainfall rate has a constant expected value
throughout the storm.

Unfortunately, evidence suggests that rainfall is not stationary in time. It
is generally accepted that storms of a certain type (e.g., thunderstorms) tend
to have the heaviest rainfall in a particular part of the storm (e.g., the first
third). This behavior is clearly evident on average percentage mass curves for
the particular storm type (see Eagleson, 1970). If rainfall rates were stationary
in the mean, then the average percentage mass curve should be a straight line,
not the strongly curved forms usually observed.

Using percentage mass curves to estimate the mean function of a storm in
space and time will require many assumptions about storm structure and type
(see Bras and Rodriguez-Iturbe, 1976). It would require estimation of total
event depth and duration, a storm classification scheme, and specification of
the spatial structure of the event as well.
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For real-time rainfall prediction, it seems reasonable to let the actual event
carry as much weight as possible by imposing minimal assumptions regarding
the spatial or temporal structure. As a rule, only those parameters which are
required should be estimated, and these should be estimated in a simple and
direct fashion.

The time axis of the mass curve at a point is measured relative to the local
start of the storm at that point. This suggests that the temporal structure of
the mean at several points be examined relative to the local start of the storm
at each point, not on an absolute “wall clock” time scale.

To a large extent, the spatial structure of the storm is specified by the
pattern of storm arrival at various points. In real-time estimation the storm
itself defines the arrival at each gaged location, so it may be possible to avoid
imposing any strong assumption about the spatial structure of the event. The
technique developed to estimate the mean and variance vectors draws heavily
on the above ideas.

The technique used to estimate the non-stationary mean and variance of
rainfall is called the storm counter method. It depends on one fundamental
assumption: relative to the time that a storm arrives at a location, the time
history of the mean and variance is identical for all locations. It is not assumed
that the storm will arrive at all locations, e.g., convective cells might com-
pletely miss some points.

Data from raingages are recorded in discrete time steps. The storm counter
counts the number of time steps since the start of rainfall at each raingage.
The mean and variance can be estimated for each storm counter using the
common statistical expression for the sample mean and variance:

) 1 N .
m(s) = ne) 1=21 q;[t(is)] (4)
t(i,8)#0

where

m(s) = estimate of mean rainfall rate for storm counter s

n(s) = number of gages with storm counter at least as high as s, i.e., sample
size for storm counter s

t(i,s) = indexing function giving time step for storm counter s at gage i; if
storm counter s at gage i is not available t(i,s) = 0

q;(t) = measured rainfall rate at gage i at time step t

N = number of gages in raingage network

A 1 N .

a(s) = ne) -1 z=21 lai{t(,s)} —m(s)]? (5)
£(i,5)#0

where

62(s) = estimated variance of rainfall rate for storm counter s
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The sample size n(s) may vary considerably from one storm counter to
another.

Certain effects are ignored by the storm counter method. For example, the
storm counter method does not consider orographic effects or storm aging
(i.e., variations of the storm in real time). The basic idea in using a non-
stationary mean is that the mean function will capture some of the structure
of the event. Ignoring some structural details places a heavier burden on the
stochastic component. By ignoring orographic effects or storm aging, the
storm counter method produces higher estimates of the non-stationary
variance than a model which accurately includes these effects. However, an
inaccurate orographic model might have higher variance than the simple storm
counter method, likewise for an inaccurate model of any type of storm struc-
ture.

Usually, the sample size will vary from one storm counter to another. (The
exception is the case where rainfall starts simultaneously at all locations.) In
all cases, there will be one or more gages where rainfall first occurs, and these
gages will have the highest storm counters. Storm counters greater than the
highest recorded storm counter will have no sample at all. Other storm
counters might have a very small sample. Nevertheless, an estimate of the mean
and variance for a storm counter with no sample may be required. .

What should be used to estimate the mean and variance for a storm counter
with a small (or zero) sample? The only reasonable approach is to include the
sample from nearby storm counters until an acceptable sample size is reached.
What is an acceptable sample size? The problem is to set a lower limit on the
sample size. .

If a storm counter (n) has a sample size smaller than the minimum allowed,
the sample values for the next higher and next lower storm counters are
included (n £1). The process is repeated (n £ 2, n * 3, ...) until the minimum
sample size is achieved.

A high value for the minimum sample forces all rainfall values to be
included in the mean and variance estimate. This is equivalent to assuming
stationarity because the mean and variance estimates would be the same for
every storm counter.

In order to estimate the mean or variance at any point using the storm
counter method, it is necessary to know the value of the storm counter for
that point. If it has begun to rain, the storm counter is simply the number of
time steps since it started to rain. If it has not started to rain, it is necessary
to estimate the time when it will begin to rain. In the storm counter frame-
work, estimation of storm arrival is equivalent to estimation of the value of
negative storm counters.

Several techniques were investigated by the authors (Johnson and Bras,
1978) to estimate storm arrival. They all have in common a fairly high un-
certainty in the estimated arrival time. The methods fall into two broad
categories: storm velocity methods and regression methods.

Storm velocity estimation is discussed later, nevertheless storm velocity
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defines an “upwind” direction from the point where storm arrival is to be
estimated. Even in a very dense raingage network it is very unlikely that an-
other gage will be precisely upwind of another, so that a path of some finite
width must be searched upwind for a gage where the storm has arrived. Such
a scheme was tested for a variety of rainfall events and the path width varied
to maximize the accuracy of the storm arrival estimate. For these tests, no
path width could be found that gave accurate estimates. Furthermore, no
estimate of the uncertainty of storm arrival is provided by such a scheme.

Regression techniques do provide a measure of the uncertainty of storm
arrival estimates, and primarily for this reason a regression method was
selected as the methodology to be used in estimating storm arrival. In addi-
tion, for the test cases examined, the chosen regression was more accurate
than the storm velocity method. If radar measurements were available, the
performance of the storm velocity method should be greatly improved.

The regression methodology follows. Since it has rained at some locations,
there will be some points with positive storm counters. These points can be
used to estimate the parameters of an equation:

L; = ag+a1x; vay; + ¢ (6)

where L; = storm counter at the ith gage; x;,y; = location of the ith gage; and
€; = error at the ith gage.

The estimated parameters can be used to estimate the storm counter at
gages where it has not yet rained. Presumably, the predicted storm counters
will not be positive at locations where it has not yet rained. It should be
emphasized that the regression method requires an extrapolation of the
function chosen, i.e., parameters will be estimated from gages with positive
storm counters and extrapolated to locations with negative storm counters.

Naturally, eq. 6 will describe storm arrival better for some types of events
(e.g., frontal storms) than for others (e.g., convective cells). In essence, it is
difficult to predict the arrival of a “rough” or cell-type storm, and this dif-
ficulty will be reflected in the goodness of fit of eq. 6. The model accounts
for the uncertainty in the predicted storm arrival in the following way.

The mean value (and variance) at a point where it has not rained is found
as a weighted sum of the mean values (variance) from a number of storm
counters. Eq. 6 provides an estimate, L;, of the storm counter value at the
ith gage. Also, the standard error of estimate of eq. 6 can be found, E[¢;?] ,
Rather than estimate the mean and variance of the ith gage from the single
storm counter nearest to L;, all storm counters within two standard errors of
L; are used. The means and variances of these various storm counters are not
given equal weight, the weights are proportional to a normal density centered
on L; with a variance of E[e;?]. It is known that it has not begun to rain at
the ith gage, therefore positive values of the storm counter at the ith gage are
not used in the weighting scheme.

Occasionally, it may happen that all the values within two standard errors
of eq. 6 are positive, i.e., it should already be raining. In these cases, the storm
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is considered to have “missed” the point; the storm counter is considered to
be —o=, i.e., the storm will never arrive.

The effect of using a weighted mean and variance instead of the estimates
from a single storm counter is to “hedge” the uncertainty in storm arrival.
When eq. 6 fits poorly, more storm counter values will be included in the
weighted mean.

Unless it begins to rain simultaneously at all gages in the network, the
gages will have a variety of storm counter values. Therefore, each gage could
have a mean and variance at each time step that is different from (all) other
gages.

It is difficult to formulate a direct test of the procedure to estimate the
non-stationary mean and variance. Instead, it is proposed to examine the
hypothesis that the normalized residuals have a mean value of zero at each
time step. If forced to reject this hypothesis, some doubt is thrown on the
storm counter method in the sense that it does not capture the structure of
the storm. On the other hand, accepting this hypothesis does not prove the
optimality of the storm counter method — another technique may exist that
produces a zero mean field with lower variance. In short, the testing method
is not definitive, it is simply a test of whether the storm counter method is
reasonable. The mathematics are developed below.

Define:

Eir = (qjt —mjt)/ojt (7
where

;s = estimate of mean at gage j at time step ¢

0j: = estimate of standard deviation at gage j at time step ¢
gj+ = rainfall rate (measured) at gage j at time step ¢
€jy = estimate of normalized residual at gage j at time step ¢

There is a problem in defining é;; using eq. 7, because 4;; might be zero. For
now, é;; will be defined equal to zero in this case. Let:

L1 X
Mt=ﬁj§1€jt (8)

where M ¢+ = estimate of spatial mean of normalized residuals at time step ¢;
and N = number of raingages in network.

The hypothesis to be examined is M; = 0 where M; is the true value of the
spatial mean of the normalized residual at time t. Therefore, the variance of
M; is needed:

var My = E(M;— My)? =

1 N N .
— 2o 2 Eléunée] (9)
N* a1 j=aa

The terms E[€;4€;:] are residual covariances. They can be computed using
the residual covariance function which is described below.
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The mean of the normalized residuals can be estimated at every time step.
These estimates are not independent. It is possible to compute the lag-one
covariance of the mean estimate:

o A X 1 NN
cov(MiM¢,y) = E[(My —Mp)(Mysy —Mpay)] = g 2 2 Eléigjea] (10)
i=1 j=1

One of the assumptions to be made in estimating the residual covariance
function is stationarity. As a result of this assumption, var M; and cov(M;M,,)
are constant with time as long as N is held constant. Therefore, a lag-one cor-
relation coefficient of the estimates of the mean of the normalized residuals

is defined:

py = cov(MMy, ) var M, (11)

Returning to eq. 7, there is a problem in defining €;; for time steps before
the storm arrives at gage j. The correct approach would be to consider these
values undefined and reduce the sample size N to include only points where
the storm has begun. This would give a sample size that varies from time step
to time step and therefore the variance of the sample mean, var M ¢, and its
lag-one covariance, cov (8 :M4,,), would be time-varying. To simplify computa-
tion of var M; and p p» the sample size N is held constant in egs. 9 and 10.
Every sample point used to estimate i + has the same variance and no sample
value (€j¢) is perfectly correlated with any other sample value. As a result,
every sample value contributes to reducing var M ¢+ and the variance shown is
a lower bound on var M ¢+ at each time step.

Fig.1 shows Mt vs. time for five storms. Two values of M; are shown at
each time step: (1) the value that keeps a constant sample size by assuming
that unknown € are all zero (a biased estimate); (2) the value with a time-
varying sample size. The two values become identical when it has rained at
every gage. Of course, the biased estimate is always closer to zero.

All figures show the number of gages which eventually have rain (N)and
the standard deviation of M; (¢). The lag-one correlation of M; is also reported
in some cases. The computed correlations are quite high, indicating that a high
value of M; is very likely to be followed by another high value.

The storms are taken from three data sources. The synthetic storm of Fig. 1A
was created by a rainfall generator (Bras and Rodriguez-Iturbe, 1976). The
other four events are true rainfall data collected from two dense raingage net-
works. The time steps in all cases are of 5-min durations.

The METROMEX network is the data source for the storms in Fig. 1D and
E. There are over 200 gages in this network on a grid of approximately 3 km
spacing. The gages are standard weighing-bucket gages — nearly all with 24-h
charts. The Chickasha network has over 150 weighing-bucket gages on a grid
of approximately b km spacing, and it is the source of storms of Fig.1B and
C. (The six digit number for the storm represents the date, i.e., MM081575
is the storm of August 15, 1975.)
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Fig.1. Mean of residuals: (A) synthetic storm; (B) storm CK060162; (C) storm CK041167;
(D) storm MM080175; and (E) storm MM082575.

As expected, the storm counter method performs better for some cases
than for others. Several of the storms seem to have a period of about 1-h dura-
tion when rainfall rates are higher over the entire network than the value ex-
pected from the storm counter method — notably storm MM080175 (Fig.1D).
Early in the storm, the sample size N can be quite small. Storm CK060162
(Fig.1B) has many time steps of very light rain at a small number of gages
preceding a period of heavier more general precipitation.

The storm counter method is not always completely successful in capturing
the storm structure as indicated by those storms where M ¢ is significantly
greater than 0.0 for some period of time. On the other hand, normalizing by
the mean and variance produced by the storm counter method does remove a
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great deal of the structure of the rainfall event. Again, this technique of testing
cannot show the optimality of the storm counter method, but it does show
that the technique is consistent and does identify some of the structure of

the event.

RESIDUAL COVARIANCE FUNCTION

The mean and variance of a rainfall event can be estimated in real time by
the storm counter method. To complete the definition of rainfall structure,
it is necessary to specify the residual covariance structure. In an off-line
posterior analysis, the residual covariance between two raingage locations
can be statistically estimated, using the € of eq. 7. However, a real-time analysis
for prediction will certainly require estimates of the residual covariance when
no sample values (€) are known. As a result, it is necessary to assume a
functional form for the residual covariance.

An attempt was made to avoid assuming a particular covariance function.
An estimation procedure based on smoothing sample covariances was used.
A moving average over a range of storm distances was implemented. The
problem with this approach is that it may violate the required positive-
definiteness property of the covariance matrix. Some effort at explicitly
including a positive-definiteness constraint was made, but no feasible estima-
tion procedure could be developed.

It is reasonable to assume that for any time lag 7, the covariance will have
a maximum value at some particular offsets [Axmax(7), AYmax(7)]. For lag
zero, AXmax = AYmax = 0, i.€., the covariance function has a maximum at the
origin. If the storm is moving, it should be less variable in the coordinate
system that moves with the storm than in a coordinate system fixed to the
ground. This argues that relative maxima will all be in a straight line, i.e.:

Axmax(1T) = Uyt and AYmax(7) = Uyt (12)

where U, = x-direction component of storm velocity; and U, = y-direction
component of storm velocity.

There is evidence of this behavior in rainfall (Zawadski, 1973; Marshall,
1975).

Eg. 12 assumes that the storm velocity components are constant. If the
storm velocity varies with time, the effect on the covariance is quite complex.
A variable storm velocity does more than simply relocate the covariance
maxima at each lag so that they are no longer colinear. A variable storm
velocity implies that the location of covariance maxima are a function of
absolute time, not just time lag. In short, variable storm velocity implies non-
stationarity of the covariance which would make covariance estimation dif-
ficult. Furthermore, for a rainfall prediction scheme, it would be necessary
to either propose the form of future variation in the storm velocity or assume
that it will remain constant at the value of the last estimate.

If the covariance decreases uniformly in all directions from the maxima
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defined by eq. 12, it is isotropic in a coordinate system that moves with the
storm. It is important to realize that isotropy in the moving coordinates
implies anisotropy in a fixed coordinate system with the storm’s movement
as the source of this anisotropy.

The distance from the maxima of eq. 12 is measured by the storm distance
d. Define:

d(xhyhtl;x]vy]?tZ) = [{(xl - Uxtl) - (x] - Uxt2)}2
+ {(yi - Uyty) = (yj - Uyt,) 1?1}
[{Aaxij— Ugria}? + {8y - Uyrn¥1F = dyj,,. (13)

where
Axjj=xi—xp5 Ay = ¥~y and T = 4i-h

In essence, the use of the storm distance reduces the dimensionality of the
estimation. The covariance function used for this study is the exponentidl.

Ele(xi, yi, t+7) e(x;,y5,t)] = «, exp(-6, djj,) (14)

At each lead 7, two parameters must be estimated, o, and §,. Also required
are estimates of U, and Uy, the storm velocity components.

Clearly, the ideal approach would be to simultaneously estimate all the co-
variance parameters, Uy, Uy, ao, o, @1, and 8, for a rainfall prediction
scheme with only one prediction lead value. In a multi-lead prediction format,
other height and decay parameters must be added to the list. The 6-parameter
(or 8- or 10- or more) non-linear estimation problem is formidable, especially
when it must be solved in real time.

The problem can be greatly simplified if independent estimates of U, and
Uy are available. The estimation of storm velocity is discussed below. With
Uy and U, assumed known, the covariance parameters (a, and §,) can be
estimated separately for each lag 7. The following constraints must be im-
posed on a, and B, to insure the validity of eq. 14, o, = 0; a, < ag; 8, > O.

The next section describes the procedure used to estimate the covariance
parameters, o, and 8,.

Couvariance estimation

The first step in estimating the covariance parameters is to create the
sample values. These sample values are estimated by the following equation:
1 T3 (i’j’ T )

~

Cijr Eiter €jt (15)

Ty(id) =1 Gijr)
where

Cijz = estimates of covariance between gage i and gage j at lag 7
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€it = estimated normalized residual at gage i at time step t (see
eq. 7)
T, (i,§) = length of shortest record at gage i or j, i.e., maximum

number of data values included in ¢;;, at any lag 7
T, (i.j,7), T5(i,j,7) = start and end time steps so that all é;;,, and é;; in eq. 15
exist

The quantity 75 — T', gives the number of data values included in a particular
estimate ¢;;,. Define:

mige = Ta(iir) = Taiir) (16)

Eq. 15 is the usual sample covariance estimate (recognizing that é;; has a zero
mean). Using the exponential covariance function gives
6'ijT = &Texp(_BTdijT) + nijr (17)
where n;;; = error in estimating ¢;;, using eq. 15 plus effects of errors in
estimation of &, and §,; &, = estimated value of o, ; and j, = estimated value
of §3,.

The problem is to estimate o, and §, so that the error terms n;;, are as
small as possible. Presumably, the values of ¢;;, corresponding to large n;;,
are more accurate on the average, so they should receive a higher weight in

the procedure used to estimate a, and §8,. A weighted sum of squares is
formed:

¢(&T; B'r) = 2 nijT[éijT - 6‘1‘exp("ﬁfdij'r)]2 (18)
all i,
all j,
=T

The values of &, and §, are defined by:

&T)BT = Mlp ¢(&T’BT) (19)

&r By

The solution of eq. 19 is a straightforward problem in nonlinear optimiza-
tion which can be solved with a Newton—Raphson method.

In order to test the covariance estimation, a process with known covariance
is needed. A rainfall synthesis model (Bras and Rodriguez-Iturbe, 1976) was
used to generate a rainfall event. The event has a non-stationary mean and
variance. It moves at constant velocity. It has an exponential covariance
function of the residuals with true lag-zero parameters ay = 1.0 and B, = 0.5.
The event was sampled at 5-min time step at 36 “gages” in a 6 X 6 uniform
grid with grid size 2.0 mi. The storm counter method described above was
used to estimate the means and variances. The estimated covariance param-
eters of the residuals &, and §, for each time step are shown in Fig. 2.

Estimation of « is very stable, as expected. No estimate of 8 is possible for
the first ten steps because the sample size is too small, so the default value
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Fig. 2. Covariance estimation test.

(0.5) is shown. The first four estimates of  are far off, but the value stabilizes
quickly.

It should be emphasized that &, and 3, are dependent on the procedure
used to estimate means and variance. Covariance parameters at higher lags
are also related to the storm velocity.
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DEFINING STORM VELOCITY

It is not simple to define the storm velocity. Rainfall rates form a complex
pattern that both moves and changes with time. Due to changes in the storm,
the movement of one function of the pattern (e.g., the point of maximum
rainfall rate) may not be the same as the movement of some other function
of the pattern (e.g., the centroid). The storm velocity is not a physical param-
eter. It has to be defined as some function of rainfall rates, and different
mathematical definitions of the storm velocity produce different “‘storm
velocities.”

No matter how the ‘““true” storm velocity is defined mathematically, it is
necessary to develop a storm velocity estimator that relies on the available
rainfall data.

Tracking techniques

The most intuitive approach to storm velocity estimation is to identify
the location of some feature of the storm pattern at a specified time and see
how far it moves in the next time step. In short, the idea is to track the
movement of some storm feature.

The common problem shared by all tracking techniques is that the data
must be adequate to identify accurately the feature being tracked. Certainly
any source of rainfall data will have some amount of inaccuracy, but there
are two additional fundamental deficiencies of rainfall data that affect the
accuracy of tracking techniques — lack of spatial coverage and resolution.

The data collection system, whether composed of radar, raingages, or both,
covers only a limited area. As a result, some part of the data collected at each
time step is from a ‘“‘new”’ part of the storm as it moves into the data collec-
tion area. Certain tracking techniques are susceptible to mismatching the
new part of the storm pattern. Basically, some techniques assume or imply
that the unobserved parts of the storm pattern all have zero rainfall.

To illustrate the effect of lack of coverage on various tracking techniques,
a one-dimensional example storm is created. The example storm is shown in
Fig. 3. The rainfall rate at time step 1 is described by q,(x). The pattern
moves 0.2 km between time step 1 and 2, i.e., g, (x) = g,(x + 0.2) and the
true storm velocity is 0.2 km per time step. The example storm is measured
from x =-0.1 to x = +0.9; the measured storm is shown in Fig. 3b. Future
sections will use the above storm to illustrate problems associated with
several sampling techniques.

As discussed previously, the only data source considered in this paper is
raingages. This places a serious restriction on the spatial resolution of the
storm pattern. Some tracking techniques that may work well for radar data
will fail using raingage data, even from dense raingage networks.

A variety of tracking techniques are briefly discussed below. Certain of
these methods were tested on one or more synthesized rainfall events. The
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Fig.3. One-dimensional example storm.

rainfall generator (Bras and Rodriguez—Iturbe, 1976) used to synthesize
the various events creates a frozen rainfall pattern that can be moved at any
speed and direction over a raingage network. Only the most promising tech-
niques were tested extensively.

The lack of resolution implicit in raingage data makes it impossible to track
a single feature of the raingage pattern such as the point of heaviest rainfall
or the center of a cell (however defined). Even with high-resolution data, it
is better to track the whole storm pattern in some way and thus use all avail-
able information.

Centroid. In this approach, the storm movement is defined by the movement
of the centroid:

x@t) = [ xq(xy,t)dedy/ if q(x,y,t)dxdy (20)
A
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where g (x,y,t) = rainfall rate; X (t) = location of centroid in x-direction (E—W)
at time t; and A = data collection area.
The velocity is defined by:

Ue = [X(t) - X({t)]/ (&2~ ) (21)

where U, = storm velocity component in x-direction. The y-component of
storm velocity is similarly defined.

Unfortunately, it is possible for the movement of the estimated centroid
to be the opposite of the movement of the true centroid. A new part of the
storm enters the data collection network at each time step. If the new part
of the storm has a heavy rainfall rate, it can move the centroid estimate in a
direction contrary to the storm movement.

Applying the centroid tracking technique to the one-dimensional storm
(Fig. 3) shows exactly this behavior. The centroids of the measured storm
pattern at time steps 1 and 2 are at x = 0.250 km and x = 0.233 km respec-
tively, giving a storm velocity estimate of —0.017 km per time step. The true
velocity is +0.200 km per time step. The centroid of the entire storm moves
from —0.383 km to —0.183 km, giving a correct velocity estimate.

Composite matching functions. Three functions have been investigated to
define how well rainfall patterns match at two time steps:

Cited) = & f ateytiatere, y+5, t)dxdy (22)
S

Crlod) =5[] laeyt) - aleva, y46, )] dxdy (23)
A

Cs(a,B) =§‘ ff la(x,y,t)) — q(x+a, y+B, )| dxdy (24)
S

where g(x,y,t) = rainfall rate at time t at location (x,y); and S = area compared.
The basic procedure is to optimize the match defined by C,, C, or C; to
find (a*,%*), the x- and y-components of storm movement. In other words:

a¥, 8* = Max C,(«a,B), or Min C,(«,B), or Min C;(«,B)
a,B a,p @, B

The match point (a*,8%*) defines the storm velocity components:
Ux = a*/(t; - 1)) and Uy = pg*/(t, — 1) (25)

Rainfall data are collected at two points in time, ¢, and t,, and compared
using eqs. 22—24. Since the size of the data collection system does not
change, the area compared (S) would be a function of the displacements «
and § as depicted in Fig.4A. There is no guarantee that the matching function
is comparable at different values of a and §, even when normalized by S. This
difficulty can be avoided.
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It should be possible to specify a priori a maximum possible storm velocity
Umax. This implies a minimum possible area of comparison S. The area com-
pared in eqs. 22—24 is limited to this minimum value of S. The procedure is
depicted in Fig.4B. Limiting the matching area in this way does disregard
some data, but it guarantees that the value of the matching function can be
compared for various displacements.

The maximum product form (C, in eq. 22) has been used to estimate storm
velocity by at least one researcher (Zawadski, 1973) using radar data. The
maximum product form requires that the whole storm be within the data col-
lection system, i.e., that the rainfall rate be zero elsewhere. If not, a new part
of the storm pattern with heavy rainfall can enter the data collection network
and bias the results in a manner similar to the centroid movement. Zawadski
used the maximum product function (C,) to track a group of convective cells,
and the problem did not arise.
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Applying the maximum product form to the one-dimensional sample storm
shows the difficulty clearly. For this case:

~1

1 ©
Ci(@) = g5 [ @@ a(x+e)dx

04
where
q:(x) = g2(x +0.2)

0.6, for -0.1<x<0.0
(x) = 0.2, for 0.0<x<0.5

a1 0.1, for 05<x<0.9

\ unknown, for x<-01 or x>0.9

The limits of integration are chosen to allow a maximum storm velocity of
+0.2 km per time step. The computed values of C, («) are shown in Table 1.
Notice that C, («) is a maximum for o = —0.2, but the value of that correctly
identifies the storm velocity is « = +0.2

TABLE I

C,(a) for example storm

C(a) « Notes

0.0733 -0.2 maximum value of C («)
0.0600 -0.1

0.0467 0.0

0.0317 +0.1
0.0300 +0.2 true value of «

The absolute deviation function (C,) has computational advantages over
the squared deviation function (C,). Since both gave identical results in tests,
the absolute deviation (Cj3) is preferred.

The three matching criteria are defined in integral form, but the rainfall
rate is not known as a spatially continuous function. It is necessary to approx-
imate the double integral form of C,, C, and C,.

As a first step, the rainfall generator (Bras and Rodriguez-Iturbe, 1976)
was used to create a known event sampled on a uniformly-spaced grid of
50 X 50 points. The grid spacing was very small (~0.25 mi.). Since the grid
spacing of sampling points (i.e., raingages) was uniform, the double integral
form of the matching functions could be approximated by a double summa-
tion at discrete values of « and § corresponding to multiples of the grid
spacing. This test gave perfect results for both C, and C; — the true values of
Uy and U, were identified in every case (to the accuracy of the grid spacing).
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A network of 2500 raingages (50 X 50) is totally unrealistic. Also, no real
network is uniformly spaced. To be useful, some approximation of C,(«a,f) or
C5(o, 8) must be found that uses realistic data.

The next approach tried was to fit a continuous surface to the observed
rainfall rates and use this fitted surface in the expression for C,(a, ) or Cs(a, 8).
Hopefully a fitting function could be found that would allow eq. 23 or 24 to
be integrated analytically as a function of the parameters of the fitting func-
tion and the values o and B. Neither a multiquadradic (Hardy, 1971; Shaw
and Lynn, 1972), Fourier (Davis, 1973), nor polynomial (Davis, 1973) fit
yields a useful form. Other interpolation schemes such as bi-cubic spines
(Shaw and Lynn, 1972) or kriging (Davis, 1973; Guarascio et al., 1976)
calculate weights as a function of location and therefore do not have a
universal parameter set; these methods are even more difficult to integrate
analytically. In short, this approach does not work.

Instead of using the fitted function directly in the expression for Cs(«, ),
it can be used to find interpolated rainfall rates at points forming a uniform
grid. If the interpolated grid has the same number of points as there are rain-
gages, then the interpolation scheme is merely “correcting”. the true locations
to form a uniform grid. If there are more points in the interpolated grid, the
data have been “extended” (by introducing the structure of the fitting
function). This approach is by far the most promising tracking technique,
and it has been tested for a number of synthetic events. The results of these
tests are presented below where the accuracy of the tracking method is
compared to the regression approach described in the following section.

Regression

It is difficult to estimate the storm velocity from point data. Trying to
find the cross-covariance maxima leads to a high-order non-linear parameter
estimation problem. Raingage data lack the spatial resolution to accurately
track the storm pattern. What is required is a linear estimation technique
that relies on the temporal (not spatial) detail of raingage records.

It is possible to estimate the storm velocity via a linear regression. The
approach was first used by Marshall (1975), and has been applied by at least
one other investigator (Shearman, 1977).

Referring to Fig.5, consider two raingages, i and j, a distance d apart. A
storm from direction 6§ moving at speed V will take ¢;; to travel between i and
j in the direction of storm movement where:

tjj = dcos(a—0)/V (26)
Expanding cos(a — ) gives:
tij = (cosf/V) dcosa + (sinf/V)dsina = (cos/V) y;; + (sinf/V)x;;

= byyij + baxyj (27)
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Fig.5. Storm passing over gages i and j (after Marshall, 1975),

where x;; = (xj — x;) = x-direction distance from gage i to gage J; vij = (¥j — ¥i);
V = magnitude of storm velocity; and 8 = direction of storm movement (from
North axis).

If t;; can be estimated from the raingage data, then the parameters of eq. 27
can be estimated as a linear regression. From the estimated parameters, b,
and b,, estimates of V and 6 are found:

V= (b2+b,))t  and 0 = tan' (by/by) (28), (29)
Finally, the two storm velocity components can be estimated:
U, = ~Vsind and (7y = Vcosf (30), (31)

How should t;; be estimated? The basic idea is to find the best match be-
tween the rainfall records at gages i and j. The time lag giving the best match
is used to estimate t;;. Marshall (1975) uses the cross-correlation function as
a matching criterion. There is a slight computational advantage to a different
matching criterion:

Tt .
fj = Min ——= 5 |ait+ ;) - q(0)] (32)
g T-ty =1 ~
where t;; = time lag of match point measured in time steps; g;(t) = measured

rainfall rate at gage i at time step t; and 7 = number of time steps in storm
(up to present).
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Then:
i = iat (33)

where At = time step length.

Egs. 32 and 33 can be used to find fij for each distinct pair of raingages i
and j. The need for computational efficiency is apparent, since there are N X
(N-1)/2 distinct pairs in an N gage network, and the number of terms in eq.
32 grows with time.

Certainly eq. 32 will not always locate the true match point. Since the
sample size tends to be large and the computational effort high, it is reason-
able to avoid estimates which are likely to be in error. Several criteria were
established to try to improve the quality of the sample used in eq. 27.

If either gage i or gage j has fewer than four rainfall values since the storm
started at that point, fij is not computed. Clearly, some minimum number of
data values should be required, although the choice of four as the minimum
is arbitrary.

Large values of f,-j indicate that the storm takes a long time to travel from
gage i to gage j. While this will surely be true for gages which are far apart,
large values of fij will tend to be less accurate due to changes within the
storm. Computed values of ¢;; which are greater than one hour are discarded.
Again, the choice of one hour is arbitrary.

If the start of rainfall at gage i is more than one hour different from the
start at gage j, then fij is not computed. If a computed fij is more than 1 h
different from the difference of rainfall start times at i and j, then it is not
used.

The effect of these rules is to remove sample values of fij which are most
likely to be inaccurate.

If all goes well, a large number of values of fij will be available to estimate
the parameters of eq. 27, and a standard linear least-squares regression proce-
dure will give an excellent fit. Sometimes the regression approach will not
work because the sample size is too small or the regression lacks significance.
In these cases, the centroid is used to estimate storm velocity.

The regression can fail in two ways: insufficient sample or lack of signif-
icance. If there are fewer than ten sample values of fi]-, the regression is not
attempted.

The significance of the regression is tested; the hypothesis b, = b, = 0 must
be rejected with 99% confidence using the F-statistic of the regression (Draper
and Smith, 1966).

The regression estimate of storm velocity performed well for a number of
synthetic test storms, including cases where storm tracking techniques failed.
However, there were a few test cases where the storm velocity estimates
diverged from the true values for a number of time steps. Examining these
problem test cases showed that a few values of fij were significantly different
from the true values, but the majority of values were reasonably accurate.
Therefore, a robust regression procedure was implemented to automatically
remove outliers.
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TABLE II

Comparison of the regression approach and storm tracking techniques

Tracking Regression
(1) relies more on the description of (1) relies more on the description of
the spatial variation of rainfall the time variation

intensities than the time history
of the event

(2) conceptually based on a storm (2) conceptually based on a constant
velocity that may change with storm velocity
time

(3) gives no indication when the (3) gives an indication that the
estimate is poor estimate is poor

If the standard error of the regression is less than 0.15 h, the robust re-
gression procedure is not needed. If not, then the outliers are identified and
removed from the sample values of fij. Any fij more than two standard
errors away from the latest regression is considered an outlier.

Once the outliers are identified and removed, a new regression is performed
on the pruned sample. This new regression is also subject to the standard error
test. If it fails, the entire sample is pruned again and another iteration of
robust regression performed. A limit of ten passes of robust regression is
imposed.

In most of the test cases, the robust regression was not required. When
used, the robust regression usually converged to a velocity estimate close to
the true value in two or three passes. The other cases converged, but more
slowly.

The regression approach to storm velocity estimation produces reasonably
accurate estimates. When it fails, it indicates the poor estimate by lack of fit,
and therefore allows for alternative estimates to be used when it fails. The
contrast between the regression approach and storm tracking techniques is
shown in Table II. On conceptual grounds, the regression scheme seems to
be more appropriate when the data source is a raingage network alone. Radar
data which have much greater spatial detail are better suited to a tracking
approach.

Testing of velocity estimates

It is impossible to test storm velocity estimation methods on real storms
because there is no way to find the true storm velocity. Instead, various
synthetic events moving at different known storm velocities were created
using a rainfall generation model (Bras and Rodriguez-Iturbe, 1976). These
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test storms were used to compare the accuracy of the matching technique
with the regression technique.

For each test case, a generated rainfall event was sampled on a 6 X 6 grid
(36 points) at a spacing of about 2 mi. The multiquadratic equation (Hardy,
1971) was used to extend the sample to a 50 X 50 uniform grid at a spacing
of 0.25 mi. Using the 50 X 50 uniform grid, C;(a,8) (see eq. 24) was approx-
imated for discrete values of « and 8 to find «* and 8*, the optimal values.
Complete enumeration of all possible values of ¢ and § is computationally
burdensome, so a gradient search procedure was used to find o* and g* to
minimize C;(a,8). The same generated values (on the 6 X 6 grid) were used
as input to the regression method.

The results of the first test case are shown in Fig.6 A. Both techniques
perform reasonably well. The regression method does not have a large enough
sample until time step 4. The value of U, produced by the regression is far
off at time step 4, but thereafter both methods perform fairly well. The
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-o- Centroid Estimate
-*- Regression Estimate
20 -x- Matching Estimate

\ Y % True

-10 -
L I | | | | |
T T T I 1 I 1
Y 10 20 30 40 50 60
20
10
- 0 True
Uy
-10 =

-20 @

Fig.6A. For caption see p.121.
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centroid estimate is also shown (for time steps 2—8) in Fig.6A. The discrete
values of « and 8 correspond to approximately 1 mi./h for a 15-min time
step.

Test storm one seems to indicate that either method might be used. How-
ever, further testing showed that the good performance of the matching tech-
nique during the first test was fortuitous. The storm velocity of the first test
is close to an even multiple of the grid spacing of the 6 X 6 grid.

The second test storm has one-half the velocity of storm 1. The results are
shown on Fig.6B. The regression estimate performs much better than the
matching technique. An attempt was made to improve the matching technique
by comparing every other time step rather than every time step, i.e., giving
the storm more time to move. The improvement is apparent, but there is no
indication of when the every-other-step procedure should be used. In a test
case, the storm velocity is known to be slow, so the every-other-step procedure
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Fig.6. Velocity estimation tests: (A) storm I;(B)storm 2; and (C) storm 3.

is indicated. In the real world, the unreliable estimate obtained by the matching
technique does not give an indication that an every-other-step procedure
would be more reliable.

The third test storm is shown in Fig.6C. The storm velocity is identical to
storm 1 (U, = 12.0) but the sampling interval is reduced (from 15 to 5 min).
This placed an unbearable strain on the matching technique to discern a
smaller amount of movement over each time step. The regression estimate
performs well up to time step 40 or so. At that time, a number of erroneous
sample values of f, j (see eq. 32) begin to be produced. The robust regression
scheme reduced the sensitivity of the estimated Uy and Uy, to these erroneous
sample values and produces more accurate U, and U The most divergent
values (time steps 57, 58 and 60) are produced When the robust regression
was terminated due to the number of iterations criterion.

As a result of the three test storms shown, as well as other test results not
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shown, the authors recommend the regression approach to estimate storm
velocity from raingage data.

CONCLUSIONS

This paper shows real-time parameter estimation for a rainfall forecasting
model. Hopefully, future researchers will benefit from the illustrations of the
several methodologies presented.

The storm counter technique is easy to implement in real time and capable
of representing significant features of a rainfall event. Although testing of the
procedure can only be described as a qualified success, it is obvious that the
non-stationarity in the mean and variance of the rainfall process is captured
by the storm counter method. The method permits handling non-stationarities
without major, inflexible, structural assumptions.

Estimating the covariance structure in real time proved to be a challenging
problem. Functional forms are required to preserve positive definiteness of
covariance. The optimization methodology utilized to estimate parameters
worked well and efficiently. It was necessary, though, to estimate storm
velocities outside of the covariance identification procedure.

Testing of several velocity estimators ranging from storm feature tracking
to covariance maximization clearly converged in a regression procedure based
on time histories of raingages. The selected estimation procedure proved to
be stable and convergent under many conditions.

All the parameters estimated and discharged in this paper can be used in
real-time forecasting of rainfall. Interested readers are referred to Johnson
and Bras (1978) for forecasting applications.
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