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PREFACE

This report is the second of a series describing the use of the
complete equations of unsteady flow for real-time computation of
stages and discharges in rivers, reservoirs, and estuaries that are
forecast by the National Weather Service. The first report, NOAA
Technical Memorandum NWS HYDRO-18, 'Numerical Properties of Implicit
Four-Point Finite Difference Equations of Unsteady Flow," examined
the numerical properties of the implicit difference scheme utilized
in the "implicit dynamic routing model," presented in this report.

=N
e



CONTENTS

List of f1QUTES . & 4 4 o 2 o o o o o o ¢ s o o o o o o o s o o v
Abstract . . . : e e s o s o s s s s e e s s s 8 s s s e = s vii
1., Introduction . o o o o o o o o« o o o o s o o o o o o o o o 1-1
2. Derivation of the Saint-Venant equations . « « ¢ o o o o & 2-1
TNtTOdUCEION o o o o o o o s o o o « o s o s o o o o o 2-1
Conservation Of MASS + o o o o o « o o o s o o o o o o 2-1
Conservation of momentum . « « o o o o o o o s o o o 2-4

The Saint-Venant equations . « + « o o o o o o o o « » 2-11

3. Solution methods of the Saint-Venant equations . « « + + « 3-1
Introduction "« o« o ¢ o o ¢ o o s o o o s o o o s o o o 3-1

Method of characteristicCS o« o« o o o o o o o o o o o = o 3-1
Development of characteristic equations . . . . ; . 3-1

First-order finite-diffegepqe approximation . . . . 3-6

Computation of interior pointé e t o s s e s s o o 3-8

Initial conditions . & ¢ o o o o ¢ o o o o o o o 3-9

Boundary conditions . . . ... e s s s e e e e s s . 3-9
Finite—-difference approximations . « « o« o o o « o o o 3-14
Explicit finite-difference methodsv e s e s e o s s s s 319
Implicit finite-difference methods . . . « « . . .« . & 3-23

4, Weighted four-point implicit method . & « & ¢ ¢ o o o &« « « 4=-1
Introduction . . . . .-.A. RN 4-1
Numerical properties . .+ o o o o o ¢ ¢ o o s s e e o 4-2
Finite-difference equat%;ns e e s s e s e e e e e A9

Boundary and initial conditions e e e e s e e e e s 4-12

e
e
2N



Solution of system of difference equations . . . . . . 4-18
Relaxation algorithm for system of rivers . . . « « « . 4=25
References ® & & o 5 e o s s e @ '. e o & o ® & o e @ s s o e o R"l

Appendix A. Solution of non- linear equation by Newton-
Raphson iteration 4 ®» ® & & e e e e & s s & ¢ & & e & o s o A_l

Appendix B, Solution of non-linear system of equations by
NeWton-Raphson iteration » e ® & & & s e ® s e ° s o s s s o B‘-l

Appendix C. Compact Gaussian elimination algorithm for
quad-diagonal systems e ® ® o ® & & & 8 ® e * o s 2 & » o s > C“‘l

iv



Al Mo

s

B o R R e T SRR S

Figure

2.1

2.2
3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8
3.9

4,1.a

4. 1.b

4,2.a

4.2.b

4,3.a

4.3.b

LIST OF FIGURES

Profile' and cross~section of an elemental reach
of channel . v o ¢ ¢ o o o o o o o o o o o o

Forces acting on surface of control volume . .
Characteristic curves in the x-t plane . . . .
Characteristic net in x-t plane . . + « « « «
Domain of dependence for point T . . . . . & ;
Range of influence of point M. . + ¢« & o « « «
Characteristic net with initial points . . . .

Derivation of finite difference approximations
for derivatives . « ¢« o o o o s ¢ s ¢ o o o

Finite difference approximations for explicit
diffusion scheme .+ . o ¢ ¢ ¢ ¢ o o o o o o &

Weighted four-point implicit scheme . . . . . .

Weighted six-point implicit 'scheme . . . . . .

Damping convergence ratio, Cy, against Dp, for box
scheme with variations in D, and D¢ = 0.0 . + « «

Celerity convergence ratio, C., against Dy for box
scheme with variations in D, and D¢ = 0.0 . « & &

Damping convergence ratio, Cj, against Dy for backward
implicit scheme with variations in D, and D¢ = 0.0

.

Celerity convergence ratio, C., against Dy for backward

implicit scheme with variations in D, and Dg = 0.0

Damping convergence ratio, Cy, against Dy for box
scheme with variations in D, and Dg = 1.0, . ..

Celerity convergence ratio, C,, against Dy for box
scheme with variationms in D, and Df = 1.0 . . . &«

Page

2-5

3-5

3-10
3-11

3-12
3-15

3-18
3-25

3-27
4~-6

46



by

x~t solution plane showing time lines, nodes, grids,
upstream and downstream boundaries, and initial

condition time line ., .

.

(3

.

.

-

Single—value rating curve . « . + o o ¢ s o o o v -

Loop rating cuUrve « o o s o o s o o o o o o o o o o

Application of implicit solution technique to system

OfriVerSnooooou

Graphical illustration of convergence process of

Newton-Raphson iteration

.

.

vi

.

°

.

.

.

3

.

4-13
4~16

4-16

4-26



ABSTRACT

The theoretical development of an implicit dynamic routing model
is presented. The model, which is being implemented by the National
Weather Service on major waterways forecast for flood warnings and
other flow conditions, is based on the one-dimensional differential
equations of unsteady flow known as the Saint-Venant equations.
These equations consist of an equation of continuity which conserves
the mass of the flow and an equation of momentum which conserves
the flow momentum. This report presents a detailed derivation of
the equations. Also, finite difference techniques such as the
characteristic, explicit, and implicit methods of solving the equations
are discussed. An implicit method known as the weighted four-point
implicit method is selected for reasons of its versatility and desirable
numerical properties of stability and convergence and is presented
in detail.



1. INTRODUCTION

The accuracy of real-time predicted water surface elevations or stages
for unsteady flows in reservoirs, estuaries, and major rivers and their
tributaries is becoming increasingly important as population growth
increases along the major waterways. In order to provide better river
forecasts of impending floods as well as other flow conditionms,
the National Weather Service is in the process of implementing a
new method of predicting the flow and stages in major waterways
that are forecast as a service to the general public including commercial
riverine interests pertaining to navigation, power, and recreation.

The new forecast method, "implicit dynamic routing," is a mathematical
model based on the complete one-dimensional differential equations

of unsteady flow. These are known as the "Saint-Venant equations,"
after Barré de Saint-Venant who first derived them in 1871.

Unsteady flow in rivers, reservoirs, and estuaries is caused by the
motion of long waves such as flood waves, tides, storm surges, and
reservoir releases. This motion can be considered ome~dimensional,
i.e., the accelerations and velocity components of the wave in the
transverse and vertical directions are neglected since they are small
relative to the components in the direction of the longitudinal axis
of the waterway. Hence, the wave motion may be adequately described
by the one-dimensional Saint-Venant equations which consist of a
continuity equation which conserves the mass of the flow and a
momentum equation which conserves the flow momentum.

Due to the complexity of the Saint-Venant equations, solutioms of
the complete equations were impractical until the advent of computers;
however, extensive developments in numerical analysis techniques for
obtaining accurate and computationally feasible solutions to the
equations were also necessary before dynamic routing could become
a practical prediction technique. Computer development has now
progressed to the third and fourth generation computers and numerical
solution techniques have been sufficiently developed to make dynamic
routing a practical and feasible technique for operational forecasting
of the unsteady flows in major waterways. For example, the stages
and discharges along a 400-mile river system can be forecast for
a 90-day duration flood in approximately 10-20 seconds of third
generation computer time. As computers continue to be developed
having greater computational efficiency and storage capabilities,
the feasibility of using dynamic routing will become even greater.

Existing operational streamflow forecast techniques which were
developed prior to computer availability were based on gross simplifi-
cations of the unsteady flow equations. The continuity equation was
retained and the momentum equation was greatly simplified to include
only the effects of frictional resistance while the effects of flow
accelerations and water surface slope were ignored. When these ignoted
effects are important, the accuracy of predicted stages and discharges



can be increased by using dynamic routing. The neglected effects are
of critical importance in cases of: (1) upstream movement of waves
such as tides and storm surges, (2) backwater effects produced by
downstream reservoirs and tributary inflows, (3) typical flood waves
in waterways having channel bottom slopes less than approximately

2-3 feet per mile, and (4) abrupt waves caused by controlled releases
from reservoirs or by the catastrophic failure of dams.

The dynamic routing model also provides additional hydraulic information
about flow along the waterways such as the depth, flow cross—sectional
area and top width, hydraulic radius, velocity, water surface slope,
and energy slope.” This information is necessary for predicting sediment
transport along the waterway. The transport of sediment affects the
channel bed elevation through the processes of degradation (scour) and
aggradation (deposition or fill). In some rivers, bed elevation changes
are significant enough to seriously affect the stages. Also, channel
resistance in sand-bed rivers is affected by sediment transport which
causes changes in the form or shape of the sand waves along the bottom
of the river. Such changes result in changes in flow resistance which
can be significant enough to seriously affect the river stages. Also,
the hydraulic information provided by the dynamic routing model is
required to forecast water temperature changes along the waterway.

The dynamic routing model also provides advantages over simpler
techniques when forecasting extreme flood events that exceed previous
flow records, such as those resulting from a record rainfall or a
dam failure. A technique such as dynamic routing which neglects
fewer of the essential physical processes characterizing the flood wave
propagation phenomenon, relies less'on previous flow records than do
simplified techniques. Thus, it may be used with less error to
predict extreme flows as fewer of the significant factors affecting
the flood wave need to be extrapolated beyond previous experience.

Dynamic routing was first used by Stoker [1953] and Isaacson, et al.
[1954] in their pioneering investigation of flood routing in the
Ohio River and has since been modified and applied by many. investigators.
This report presents the theoretical development of the implicit dynamic
routing model currently being implemented by the National Weather
Service. A detailed derivation of the Saint-Venant equatiomns is
presented to provide insight into the physical basis of the model.
The numerical solution technique, an implicit finite difference
numerical integration scheme, is presented in detail. Also, a brief
development of two other solution techniques, the "method of
characteristics" and the "explicit method," are presented to provide
useful background information for understanding the mathematical
concepts, complexities, and advantages associated with the implicit
numerical integration technique.
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2. THE SAINT-VENANT EQUATIONS:
THEIR DERIVATION AND RELATION TO OTHER FLOW-ROUTING METHODS

Introduction

The mechanics of the unsteady open-channel flow of water may be ex-
pressed mathematically in terms of the Saint-Venant equationms. These
equations are partial differential equations which may be derived from
the laws of conservation of mass and momentum. Various derivations have
been presented, e.g., Stoker [1957], Chow [1959], Henderson [1966],
Streeter and Wylie [1967], Strelkoff [1969], Liggett [1975], and many
others.

It is assumed in the derivation that the flow is one-dimensional in
the sense that flow characteristics such as depth and velocity are con-
sidered to vary only in the longitudinal x-direction of the channel.
It is further assumed that: (1) the velocity is constant and the water
surface is horizontal across any section perpendicular to the longitudinal
axis; (2) the flow is gradually varied with hydrostatic pressure prevailing
at all points in the flow such that the vertical acceleration of water
particles may be neglected; (3) the longitudinal axis of the channel
can be approximated by a straight line; (4) the bottom slope of the
channel is small; (5) the bed of the channel is fixed, i.e., no scouring
or deposition is assumed to occurj (6) the resistance coefficient for
steady uniform turbulent flow is considered applicable, and an empirical
resistance equation such as the Manning equation describes the resistance
effects; and (7) the flow is incompressible and homogeneous in density.

Conservation of Mass

The law of conservation of mass is.used to derive the first of the
Saint-Venant equations, i.e., the equation of continuity. Conservation
of mass simply expresses the fact that mass inflow minus mass outflow
equals the time rate of change of mass stored within the channel volume
being considered.

Consider a control volume of channel of length dx with flow proceeding
from section 1 to section 2, as shown in Fig. 2.1. Let x be the horizontal
distance, positive being taken in the downstream direction; p, the
density of water; g, the gravity acceleration constant; z, the elevation
of the channel bottom above a datum plane; y, the depth of water; A, the
cross—-sectional area; V, the average velocity; and B, the width of the
free surface. The depth at section 1 is y and at section 2 is y+(dy/dx)dx.
The cross-sectional area is A at section 1 and A+(JA/5x)dx at section 2.
Let pQ be the mass flow rate entering the channel through section 1;
PQ+p(3Q/3x)dx, the mass outflow rate; and q, the lateral inflow per unit
channel length per unit time, where q has dimensions of ft2/sec.

The mass inflow Ima to the dx reach of channel during a time interval
dt is:
Ima = p(Q + q dx) dt (2.1)

and the mass outflow Oma from the same dx reach during the time interval

2-1
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dt can be expressed as:
= p[Q + (3Q/9x) dx] dt (2.2)

If 9Q/9x is taken as positive, there is a net mass outflow from the reach.
The mass of water remaining within the dx reach is simply the product of the
elemental volume times the mass density, and the time rate of change of

this mass (dS__/dt) during a dt interval of time may then be expressed

in the form:

ds
ma _ O(pPA- dx) »
dt 5¢ at (2.3)

Now, according to the law of conservation of mass, the mass inflow minus
the mass outflow must equal the time rate of change of mass storage within
the reach, i.e.,

ds__
I, -0 == (2.4)
or:
P(Q + q dx) dt - p(Q + Q dx) dt = Qiﬁggéﬁl dt (2.5)

Upon simplifying Equation (2.5), one obtains:
9Q/3x + 9A/3t - q =0 (2.6)

which is known as the conservation form of the equation of continuity
for a prismatic or non-pri:amatic chamnel. Sometimes the second term
of Equation (2.6) is expressed as the sum of the active channel area
and the dead storage area A,, wherein the velocity of flow in the
x-direction is considered negligible such as a tributary which stores
the flood waters of the main river or a heavily vegetated flood plain.
In this case, Equation (2,6) -is expressed in the form:

9Q/3x + 3(A + Ao)/Bt -q=20 (2.7)

Since Q = AV, 0A/3t = B 3y/dt, and for a prismatic channel, dA = Bdy,
then Equation (2.6) may be written as:

V(3y/3x) + A/B(3V/3x) + 3y/dt - q/B =0 (2.8)

However, if the channel is non-prismatic, A is also a function of x,
such that 8A/9x = (3A/9x), + B 3y/dx, where the subscript indicates
the depth is to be held constant when taking the derivative. Then,
Equation (2.8) becomes:

_zABV_:/_V.B_é_ﬂ= ‘
\Y + 3 x + st t 3 |52 , B 0 , {2.9)

‘2_3
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Eqiiations (2.8) and (2.9) are the non-conservation form of the equation
of continuity for prismatic and non—-prismatic channels, respectively.
The non~-conservation form enables certain finite difference solution
techniques to be applied. However, the conservation form, Equations
(2.6) and (2.7), is the form which will be used herein.

Conservation of Momentum

The law of conservation of momentum is used to derive the second
Saint-Venant equation, i.e., the equation of motion or dynamic equilibrium.
The conservation of momentum is given by Newton's second law of motionm,
which states: The sum of the forces acting on the surface of the control
volume + the net rate of momentum entering the control volume = the
time rate of accumulation of momentum within the control volume.

The forces acting on the surface of the control volume of Fig., 2.2
include: (1) the gravity force due to the weight of the fluid, (2) the
force due to the frictional resistance along the channel bottom and
sides, (3) the force due to the shear stress produced by wind movement
at the free surface of the control volume, and (4) the unbalanced
pressure force.

1. Gravity force. The force component of the weight of fluid in
the control volume in the direction of the x-axis (positive if directed
downstream) is:

Fg = pg A dx sin ¢ (2.10)

However, since the angle ¢ between the channel bottom and horizontal
x-axis is small, then:

tan ¢ = sin ¢ | . (2.11)
and
tan ¢ = - S =3 (2.12)
o dx o *

- Therefore, Equation (2.10) can be expressed as:

Fg = pg A So dx (2.13)

2. TFrictional force. The frictional resistance is manifested by a
shear stress T along the bottom and sides of the control volume.

An empirical equation for open channel resistance such as the Chezy

equation or the Manning equation can be used to express the frictional
resistance. Herein, only the Manning equation is used, which is
expressed by the following relationship:

= 1:486 copn o 2
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where n is the Manning resistance coefficient, which can commonly assume ‘
values ranging from 0.01 to 0.20; R is the hydraulic radius; and S_ is
the friction slope. The frictional force due to the boundary

shear stress is:

Ff = -TP dx* (2.15)
where P is the wetted perimeter such that R = A/P and T is the shear
stress which can be expressed in terms of the friction slope S., i.e.,
in the case of uniform flow, the friction force is in balance with the
gravity force and Sf is a good approximation of So‘ Thus:

TP dx = pg A'sf dx (2.16)
Therefore:
T=pg RS (2.17)

£
Substituting Equation (2.16) into Equation (2.15), the following expression
for the frictiomal force is obtained:

Fo = -pg A S; dx (2.18)

3. Wind shear force. The force due to the shear stress at the free
surface of the control volume due to the frictional resistance of wind
against the surface of the flowing water is given by:

Fw = =T, B dx ' (2.19)

where B is the width of the free surface of the control volume and T
is the wind shear stress. In this derivation, it is assumed the
wind is opposing the flow, hence, the negative sign associated with T,

4. Unbalanced pressure force. The pressure distribution is assumed
to be everywhere hydrostatic, as previously mentioned. This well approxi-
mates the case where the curvature of the free surface is small as is
true of most flows in open channels except those known as rapidly varied
flows (flow over spillways, abrupt waves, hydraulic bores, etc.).
The unbalanced pressure force is seen from Fig. 2.2 to be the resultant

-of the forces ¥ _,, ¥F__, F o The hydrostatic force acting on the left

1
side of the congrol volume is:

Fp = Iz pg (y - w) b dw (2.20)

The hydrostatic force acting on the right side of the control volume
is:

_ F
For ™ [Fpl - dx} (2.21)

2-6



where 3F /3% can be obtained from Equation (2.20) by applying the Leibnitz
rule forpgifferentiation, which yields the following expression:

oF

Y
—pl _ Sy -y 9B
- jo (3. b dw + [Z pg (y = w) e dw (2.22)

Since the cross sectional area is:
y
A=j b dw - (2.23)
o .

Equation (2.22) can be written as:
OF 1 5 . f b
—E= = pg A 5T+ jo pg (v - W) 5= dw (2.24)

If the channel is non-prismatic, i.e., it narrows or widens in the
downstream direction, the banks contribute an additional pressure
force pr. This force is:

y 3b
pr = ]; pg (v - ﬁ)-sg dw| dx (2.25)

The unbalanced pressure force F_ can be determined by summing the various
pressure forces acting on the sgrfade'éf«the control volume. Thus:

oF
S - b1 ]
o ™ Fp1 T [Fpl+ 5= 9% T Foy (2.26)
or.:
oF .
F =—-—2=dx+F (2.27)
P ox pw .

Substituting Equations (2.24) and (2.25) in Equation (2.27) yields:

y
= - Y 4y - - W) 2B
Fp pg A e dx - dx IO pg (y = w) . dw

y
+ dx I pg (y = w) %% dw (2.28)
‘ 0
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Since the last two terms of Equation (2.28) cancel one another, the
unbalanced pressure force is simply:

- - y
FP pg A e dx (2.29)

If the channel is prismatic, the second and third terms of Equation
(2.28) are zero since 3b/3x = 0 for the prismatic channels. Therefore,
Equation (2.29) is applicable for prismatic channels.

The sum of all -forces acting on the control volume is given by the
algebraic summation of the gravity, frictional, wind shear, and
unbalanced pressure forces. Thus, summing Equations (2.13), (2.18),
(2.19), and (2.29), we obtain:

F = Fg + Ff + FW + Fp \ (2.30)

or:

cog AS dx - et Bodx - op A
F=pgA So dx - pg A S, dx T, Bdx - pg A N dx (2.31)

£

The rate of flow of momentum in the x direction is the product of the
mass rate of flow pQ and the velocity component in the x direction.

The incoming flow of momentum I__ includes that entering the left
side of the control volume and thae entering along the dx length due to
the contribution of lateral inflow with ‘a velocity in the x-directicn
of Ve Thus:

Imo = p(BvQ + B v 4 dx) (2.32)

where the momentum correction factor B is applied to the velocities to
account for the nonuniformity of the velocity in the vertical
and horizontal directionms.

The B factor is commonly assumed as l.O,Valthough it can range from

~1.0 to 1.3, and may become significant in cases where the velocity

distribution in the cross-section is greatly distorted. The assumption
of uniform velocity, i.e., B = 1.0, causes no error in the continuity
Equation (2.6).

The momentun outflow from the control volume is:

= 9 (BVQ) .
0 0= p{BVQ + —~s;r-de o (2.33{

m
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Therefore, the net rate of flow of momentum entering the control
volume is:

N =T - o (2.34)
or:
N = p[BVQ +8 v, qdx - 8VQ - 9—(%91 dx) (2.35)

which reduces to:-

= -3 (BVQ)
Nmo = p(B qv, - ‘—3;-% dx (2.36)

The time rate of accumulation of momentum in the control volume
is simply:

s =p2Q 4x | (2.37)

Now, upon applying the law of conservation of momentum, the momentum
within the control volume is:

F+N =328 (2.38)
mo mo

Suﬁstituting Equations (2.31), (2.36), .and (2.37) in Equation (2.38) yields:

- - - 3y
pg A So dx - pg A S_ dx Tw Bdx -pPg A e dx

f
+ p[B qv, - ES%EQlJ dx = p %%—dx (2.39)

After dividing through by pdx, the following is obtained:

T

39 , 3(8VQ) dy _ _ Tw o
e T T ox  te8A(3;-S tS)-Bqv +—5B=0 (2.40)

‘which is the conservation form of the equation of motion.

In many applications, particularly natural channels, such as rivers,
reservoirs, and estuaries, it is convenient to replace the depth y
with the water surface elevation h referenced above some datum.

Since the water surface elevation is composed of the summation

of the depth y and the elevation z at the channel bottom above a datum, i.e,

h=y+ 2z (2.41)

2-9
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then:

ah_ 2y, 3z
9x  9x + ax (2.42)

However, since from Fig. 2.1 it is seen that:

__dz _ _ 29z
S0 =T & 5% €2.43)

Therefore, Equation (2.42) becomes:

Sh_ 3y _ g
= - 9%~ oo (2.44)

The last term (the wind shear effect) may be expressed in a more
convenient form by letting:

T

=L =
We = o C, ‘Vr cos W] V_ cos w (2.45)

in which ® is the acute angle that the wind direction makes with the
x—-axis of the chanmel, C_ is a non-dimensional wind coefficient which
can assufie values ranging from 1.0 x 10 ° to 3.0 x 10 °, and V_ is
the relative velocity of the wind in relation to the velocity

V of the fluid in the control volume, i.e.,

V=4V +V S (2.46)

where Vw is the velocity of the wind at approximately 9 ft above the
free surface and the sign is (+) if opposing the velocity of the water
and (~) if aiding the flow.

After substituting Equations (2.44) and (2.45) and V = Q/A in Equation
(2.40), the following is obtained:

2 [y
20,289/ g aRes) -Bav, +W B=0 (2.47)

An eddy loss term S similar to the friction slope S. can be added to
Equation (2.47) to aceount for head losses in addition to those due to
boundary friction. These losses are due to large scale eddies formed
in the flow at rather abrupt changes in the cross-section along the
channel x-axis. The eddy loss slope S _ is evaluated using the following
empirical equation: €

K 5 e
- _elAv”
5, = Zg{Ax } (2.48)

in which K 1is a non-dimensional coefficient of contraction and expansion,
positive if contraction and negative if expansion.

2-10



After including the eddy loss term in Equation (2.47), the following
is obtained:

)
B(BQX/A) + gA(_a_;l + Sf + Se) -Bgq vx + Wf B=20 (2.49)

at
This is the conservation form of the equation of motion that will be
used herein.

Sometimes a different form of Equation (2.49) is required for certain
finite difference schemes. If B is taken as unity and making use of
Q = AV, Equation (2.49) can be expanded to give:

v Q 3Q Q% 2A
A 3t + V — at + 2 A% " AZ Bx + g A(8 + Sf + S ) - q v
+ Wf B=20 (2.50)

Then, substituting Equation (2.6) for 9A/3t and simplifying, the following
is obtained:

"W_ B .
3V Ay _g £ _
T+Vax+ (3 + S; +s)+ (V—v)+ A-—o (2.51)
and making use of Equation (2.44) yields:
W_. B
oV BV £
5t + V= % g(a - S + Sf +8 ) +3 A WV-v ) + — = 0 (2.52)

The Saint-Venant Equations

The original Saint-Venant equations, first published by Barré de
Saint-Venant [1871], did not include lateral inflow, wind effect,
or eddy loss. Neglecting these terms in Equations (2.6) and (2.51) and
using Q = AV, they become the original Saint-Venant equations, i.e.,

3 (AV) 3A '

. Bt =0 (2.53)
v |, 3V ~
3T " + vV 5= + g(a + Sf) = 0 ‘ (2.54)

The original Saint-Venant equations are expressed in terms of the
unknowns V and h, while the conservation form of the Saint-Venant equations
with. lateral inflow and wind are expressed in terms of the unknowns
Q and h. The conservation forms, Equations (2.7) and (2.49),
are repeated here for convenient reference:
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3(A+AO)

3

20,200 g (2.55)
9Q . 3(BQ%/A) dh - -

e + N + gA(ax + Sf + Se) B q v, + Wf B=20 (2.56)

The terms in Equations (2.53)-(2.56) are defined as: x = longitudinal
distance along the channel, positive in the downstream direction; t = time;
A = cross-—sectional area of flow; A = off-channel dead storage;

V = mean velocity of flow across a gection, positive in the downstream
direction; h = water surface elevation; q = known lateral inflow or outflow
per unit length along the channel, positive if inflow; v = velocity

of lateral flow in the direction of the channel flow; S *= friction slope;
Se = eddy loss slope; B = top width of channel at water surface;

Wg = wind resistance effect; 8 = momentum correction factor; and

g = acceleration due to gravity.

The friction slope Sg can be evaluated by an empirical resistance
equation such as the Manning equation, i.e.,

S = __lgihgig_,_.

£ 5,01 A2 g4%4 (2.57)

in which n is the Manning roughness coefficient. The absolute value

of Q is used so that the algebraic sign of the friction slope will be
the same as that associated with Q. In this way, momentum comnservation
is properly represented for negative flow, i.e., flow proceeding in the
upstream direction. The hydraulic radius which is defined as A/P can
be adequately approximated by the hydraulic depth A/B for most natural
river channels for which B > 10 y.

The eddy loss slope S, is evaluated using Equation (2.48) repeated
here for convenience:

K 2 '
e AV
Se = Zg{Ax ) , : (2.58)
in which K, is a dimensionless coefficient. Cross-sections contracting
abruptly in the direction of flow have K, values ranging from 0 to 0.4,
while abruptly expanding cross-sections have negative K, values ranging
from 0.5 to unity. The larger coefficients are associated with the
more abrupt contractions and expansions of the cross-section.

The wind effect We can be evaluated using Equation (2.45) repeated
here for convenience: =

We = C IVr cos w| V, cos w (2.59)
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in which CW is the wind coefficient, w is the acute angle that the wind
makes with the x-axis, and V. is the relative velocity of the wind

and the flow as given by Equation (2.46). The absolute value of V.

cos w is used for a similar reason as in Equation (2.57).

The momentum correction factor B is usually assumed to be unity,
although it may be somewhat arbitrarily assigned values up to 1.3 if
the velocity distribution in the cross-section is suspected to be distorted.

The lateral inflow q is a known function of time t and distance x
along the channel axis. It has dimensions of ft3/sec per linear ft
of channel, i.e., ft?/sec. If the lateral flow is into the channel,
q is known as lateral inflow and has a positive algebraic sign associated
with it. If the lateral flow 1s leaving the channel, q is known as
lateral outflow and has a negative algebraic sign. However, in either
case, the negative sign preceding the term q in Equations (2.55) and
(2.56) does not change.

The cross-sectional area A and the top width B of the cross—section can

be expressed as known functions of depth y or water surface elevation h, e.g.,

A(h) (2.60)

B(h) . (2.61)

A

B

]

The functions may be simple algebraic relations for cross-sections of
regular geometric shapes such as rectangles, triangles, trapezoids, or
parabolic and circular shapes. For natural channels with irregularly
shaped cross-sectional areas, the function may be a polynomial, e.g.,

- 3 2 .
B a; h? + a, h® + a, h + a, (2.62)
or the function may be a power type, €.g.,
a .
B=a, b2 (2.63)

Probably the most accurate as well as the easiest function to develop
for irregularly shaped cross sections is a step-wise linear function.
Whereas the polynomial and power type have advantages for certain
analytical solutions of simplified forms of the Saint-Venant equations
and for their conciseness, most natural cross-sections are not accurately
represented in this manner and special computations involving least-
square analysis zre required to evaluate the coefficients. Since
computers are required to obtain solutions to the complete Saint-
Venant equations via finite difference techniques, the advantages
associated with the polynomial and power type expressions are not
relevant. The step-wise linear functions can be described by tabular
values of B and h with linear interpolation used for intermediate
values. This is easily handled by the computer with a high degree
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of accuracy and requires a minimum of effort on the part of the user
in preparing the tabular input. The step-wise linear representation
of A and B will be described in detail in a later section. Actually
only A or B need be specified since one can be derived from the other, e.g.,

B = dA/dh (2.64)
or.
h N
A= f B dh - (2.65)
o] o

The first term in the continuity equation (2.55) is the rate of
change of discharge along the x—-axis. If this form were multiplied
by dx dt, it would have dimensions of volume. This volume represents
the so-called wedge and prism storages associated with well-known
storage flood routing methods. The second term is the rate of change
of cross-sectional area with time. If it were multiplied by dx dt,
it would have dimensions of volume. This volume represents the positive
or negative storage of water along the channel due to the change in
water surface elevation over an interval of time. The third term
is the lateral inflow. Again, if it were multiplied by dx dt, it
would have dimensions of volume representing the positive or negative
storage of water due to the lateral inflow or outflow.

The terms in the momentum equation (2.56) have dimensions of ftalsec2
If the terms were divided by A, the resulting dimension would be ft/sec”,
or an acceleration rate. The first term would represent the local
(temporal) acceleration due to the rate of change of flow. The second
term would represent the convective (spatial) acceleration or the so-
called Bernoulli effect due to the change in flow along the x-axis.

The third term would be the acceleration due to the combined effects
of gravity, unbalanced pressure head, and channel boundary friction.
and eddy losses. The fourth term would represent the acceleration
contributed by the lateral inflow in the direction of the x—axis.
The last term would represent the acceleration due to frictional
effects of wind at the free surface of the flow.

The conservation equations (2.55) and (2.56) or the non-conservation
equations (2.53) and (2.54) constitute a system of first-order quasi-
linear (non-linear) partial differential equations of the hyperbolic
type. They have x and t as independent variables and h and Q or V
as dependent variazbles. The other terms are constants or are functions
of independent or dependent variables, i.e., A(x,h), B(x,h), R(A,B),
n(x,h or Q), q(x,t), v_(x,t), W_(x,t). The non-linearity arises from
the presence of Q@ in the second term of Equation (2.56) and also
in Equation (2.57). Non-linearity is also introduced through A® and
Rl"f3 in Equation (2.57). Also, if A is a non—linear function of h,
this contributes to the non~linearity of the equations. The term
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V 9V/8x also adds to the non-linearity of Equation (2.54). The
classification of the equations as hyperbolic differentiates the
similarity of the mathematical properties of this type of equation
from those associated with groups of partial differential equations
known as paraBolic and elliptic equations. The hyperbolic type is
characterized by having two real and distinct characteristic directions
or curves on an x~t plane representing the solution domain of the
equations. Along these curves the partial differential equations
reduce to equations involving total differentials only. This feature
gives rise to the so-called "method of characteristics,” which can

be used to solve- the Saint-Venant equations and is presented briefly
in a later section. The parabolic type of equations have two real

and equal characteristic directions while the elliptic have two distinct
but imaginary characteristic directiomns.

The Saint-Venant equations have no analytical solutions except for
cases where the channel geometry is uniform and the non-linear properties
of the equations are neglected or linearized. However, the complete
Saint-Venant equations can be approximated by finite difference expressions
and the resulting algebraic difference equations numerically integrated
via digital computers to obtain solutions of V and h in the case of
Equations (2.53) and (2.54) or Q and h for Equations (2.55) and (2.56)
for discrete values of x and t.

The manner in which the finite differences are approximations of
the partial differential equations may require some further clarificatiom.
Finite difference solution techniques for partial differential equatiomns
are approximate in the sense that derivatives at a point are approximated
by difference quotients over a small interval, i.e., 3Q/3x is replaced by
AQ/Ax, where Ax is small, but the finite difference solutions are not
approximate in the sense of being crude estimates. Data pertaining to
the differential equations, e.g., A, h, and Q, are invariably subject to
errors of measurement. Also, all arithmetical work is limited to a finite
number of significant figures and contain round-off errors, so that even
analytical solutions provide only approximate answers. Finite difference
methods generally give solutions that are either as accurate as the data
warrants or as accurate as necessary for the purposes for which the
solutions are required. In both cases, a finite difference solution
is as satisfactory as one calculated from an analytical formula.

Some finite difference techniques will be briefly described in
following sections. One particular finite difference scheme, known
as the "weighted four-point implicit" scheme will be described
in detail,
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3. SOLUTION METHODS OF THE SAINT-VENANT EQUATIONS
Introduction .

The complete' Saint-Venant equations previously derived in section 2
constitute a system of non-linear hyperbolic partial differential equationms.
There are two fundamental classes of methods for solving these equatioms.

One class, known as the method of characteristics, converts the original
system of partial differential equations to an equivalent system of
ordinary differential equations. Then, finite difference approximations
to the ordinary derivatives are introduced and solutions are then
obtained from the resulting system of algebraic equationms.

The second fundamental class of solution methods is known as finite
difference methods. In these methods, finite difference approximations
are substituted directly into the original system of partial differential
equations. Depending on the particular finite difference approximation
used, the method of solution is known as either explicit or implicit.

In this section, a brief description of each of the two classes of
solution methods will be presented. First, the method of characteristics
is presented. Then, the concept of finite differences is introduced.
Finally, the method of finite differences consisting of explicit and
implicit variations are presented.

Method of Characteristics

The method of characteristics has been used extensively to solve the
Saint-Venant equations. Among the investigators who have used this
method are: Amein [1966], Streeter and Wylie [1967], Fletcher and
Hamilton [1967], Lai [1967], Liggett and Woolhiser [1967], Ellis [1970], -
Wylie [1970], and Fread and Harbaugh [1973a], Although the method of
characteristics is a powerful mathematical tool, it has some disadvantages
when the Saint-~Venant equatioms are applied to natural channels.

For example, the addition of certain terms such as the off-channel
storage term A, in Equation (2.6) requires a major change to the ordinary
differential equations derived from the Saint-Venant equations not
"containing the off-channel storage term. Also, solutions to the
characteristic form of the equations are not fixed in space or at
specified intervals in time. This creates the need for interpolation
schemes which add to the complexity of the solution procedure and
introduce additional errors of approximation.

Development of characteristic equations

The non-conservative Saint—Venant equations for a prismatic channel
with no lateral inflow were derived in the preceding section.
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They are:

3y L AodV 3y - ~ '
at+38x+vax 0 (3.1)
A v ay. - =

ae tVax T 83 T8 (575) =0 (3.2)

This set of equations forms a system of hyperbolic partial differential
equations in terms of two independent variables, x and t, and two
dependent variables, V and y. A general analytic solution of this
system has not been developed; however, a solution can be obtained

by the "method of characteristics." In this method, the two partial
differential equations are transformed into four unique total
differential equations. The total differential equations can then

be solved on a digital computer by either explicit or implicit finite-
difference numerical integration techmiques.

In developing the total differential equations, i.e., "characteristic
equations,"” Equations (3.1) and (3.2) are combined into a single partial
differential equation [Streeter and Wylie, 1967; Fread and Harbaugh
[1971a)]. However, in order to combine the two equations, their
dimensions must be identical. Upon examining the dimensions of
each equation, it is ‘seen that the dimensions of Equation (3.1)
are ft/sec while those of Equation (3.2) are ft/sec?. Therefore,
before forming the combination, Equation (3.2) must be multiplied
by an unknown multiplier { having the necessary dimensions to transform
the dimensions of Equation (3.2) to. those of Equation (3.1). Then
a combination may be formed by simply adding Equations (3.1) and
(3.2). Thus:

A 3V v \4 -
—g%+-g-g;+v-g%+¢[—S—E+v%;+g%+g(sf~so)]=0 (3.3)
Rearranging Equation (3.3) such that the partial derivatives of Vand y
are grouped together, respectively, one obtains: )

¥ {%%4- w +$%) g—:’;} + [%%+ (VHpg) %3’;] T bg (55,0 = 0 3.4

Now, the identity of the unknown multiplier ¥ is not known, but it is known
that the characteristic equations being sought will contain derivatives of
V and y in a particular direction only. Thus, the derivatives to be
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obtained will be total derivatives rather than partial derivatives, as
shown by Equations (3.5) and (3.6).

dv _ 3V  dx 3V
dt ot + dt 3x (3.5)

and

dy _ 3y . dx 3y
dt 3t+dt,8x (3.6)

The direction along which these derivatives are formed is known as the
"characteristic direction."

It is apparent that the bracketed quantities in Equation (3.4) are
total derivatives, where dx/dt takes on the values:

dx _ _A

-a—t':- =V + KpB (3.7)
and

dx _

ac v tue (3.8)

Since the right-hand sides of Equations (3.7) and (3.8) are equal to the
same quantity, dx/dt, then:

A
V+'@=V+wg : (3.9)
or
2 A
Y B » ~ (3.10)

Thus, the multiplier ¥ is found to be:

v== /g_g (3.11)

where i) has dimensions of sec.

Substituting this expression for { into either Equation (3.8) or (3.9)
results in:

g_ii = vt LA/E ’ ' (3.12)



The term dx/dt represents the inverse slope of every peoint on a curve
C in an x~t coordinate system. The curve C is called the characteristic
direction of the partial differential Equation (3.5). Depending upon
the sign before the radical in Equation (3.12), there are two inverse
slopes, dx/dt.” This signifies that two characteristic curves exist,
along which the partial derivatives of Equation (3.5) are total
derivatives. The two directions are defined as a positive characteristic
direction C+ and a negative characteristic direction C- as shown in
Fig. 3.1,

The differential equation of the C+ curve is:

i’ti =V + VgA/B (3.13)

and that for the C- curve is:
%’t-‘- =V - VgA/B (3.14)

The term dx/dt, as given by Equations (3.13) and (3.14), allows the
bracketed quantities in Equation (3.5) to be writtenm as total derivatives
of V and y; thus, Equation (3.5) reduces to:

o, gy _s) = |
Vgt tve Sg-5)=0 , (3.15)

Equations (3.1) and (3.2) or their linear combination, Equation (3.5),

are generally referred to as quasi-linear, hyperbolic, partial differential
equations. They are quasi-linear since all derivatives are first

order. The equations are hyperbolic since the characteristic directions,
as given by Equations (3.13) and (3.14), are real and distinct.
Substituting the two values of Y into Equation (3.15), one obtains

the following two equations:

+ Y, B/A L+g(s,-5)=0 (3.16)
and
dv -
i /'ETX > +g (S, -S) =0 (3.17)

Equation (3.16) is valid along the C+ direction described by
Equation (3.13), and Equation (3.17) is valid for the C- direction
described by Equation (3.14). These equations form the system of
equations which contain the four Characteristic Equations whose
derivatives are composed of total derivatives, rather than partial
derivatives. Thus:
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Fig. 3.1.—Characteristic curves in the x-t plane,

3-5



&, e dy PN
T + YgB/A e + g (Sf So) =0

Cc+ (3.18)
& - v + /EATE
& e dy PN
dr ~ VeB/A Gt B (5, -5) =0

Cc- (3.19)
&~ v - JEATE

First—order finite-difference approximation

The Characteristic Equations, (3.18) and (3.19), do not possess an
exact analytic solution; however, they may be solved by a first-order explicit
finite~difference approximation technique. The C+ and C- curves, defined
by Equations (3.18) and (3.19), describe a curvilinear net in an x-t
coordinate system or x~t plane, as shown in Fig. 3.2.

Denote P as the point of intersection of the C+ characteristic
passing through point L and of the C- characteristic passing through
point R. (Note that P exists if points L and R are sufficiently close
together since C+ # C-.) Now, for notational purposes, let Xy, represent
the value of x at point L, tj represent the value of t at point L, etc.
Likewise, xp, trs VR, and yg represent the values of x, t, V, and y at
point R; and xp, tp, Vp, and yp represent the values of x, t, V, and y
at point P.

The Characteristic Equations, (3.18) and (3.19), may now be represented
by the following general first-order (linear) finite-difference approx-—
imation in the form:

) (3.20)

*1
fx f(x)dx = f(xo)(x1 - %,

0

The total derivatives of Equations (3.18) are replaced by the
following finite~difference quotients:

av oL oay YL and 9% o TR (3.21)
oL ¥ E L « b .
dt tP tL dt tP tL dt tP tL

and the total derivatives of Equations (3.19) are replaced by:

av Ve Vr gy YR dx _ PT*R
I Tt dr Tt I Tt (3.22)
P R P 'R P 'R
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Upon substituting the above approximations for the total derivatives,
applying the definition of a first-order finite~difference approximation
(3.20) for a differential equation, and dividing through by the finite-
difference expression for dt, Equations (3.18) and (3.19) become,
respectively:

Vp =V *VRBITA Gpy) + (tpmty) g (8¢ =S) = ©
. c+  (3.23)
xp = % = (Vp+ /A TB) (tp-t))
Vp = Vg = /8BplAL (rpmyp) + (tptp) 8 (SfRfSo) =0
c-  (3.24)

xp = Xp = (V= Vehp/Bp) (tpmtp)
Thus, if X1s tr»> VLs YLs XRs trs VR, and yR are known values, the
solution for xp, tp, Vp, and yp can be obtained. In this way, a solution

can proceed from time line to time line in At increments of time.

Computation of interior points

Equations (3.23) and (3.24) form a system of equations, each of which
are linear with respect to the unknown variables xp, tp, Vp, and yp.
This linear system of four equations and four unknowns may be readily
solved for the unknown variables in the following manner. The second
of Equations (3.24) is subtracted from the second of Equations (3.23),
and the following expression for tp is obtained:

[x ~xptty (Vp= VBAR/Bp) - £ (Vi + /BA[7B)]
P VgV~ VBA T8~ VBATBY)

t (3.25)

Since the value of tp has been found, xp may be obtained directly from
the second of Equations (3.23), which results in:

xp = x + (V+ /gAL/BL) (tp=t;) (3.26)

The first of Equations (3.24) is then subtracted from the first of
Equations (3.23), and the following expression for yp is obtained:

yp = [V -Vt VeB /AL v+ VeBp/Ag yp= (tp=tp) g(st—so)

+ (epmtg) 8(s¢ =51/ VRBTA+ JaEyTip) (3.27)




Since the values of yp and tp have been found, Vp may be obtained
directly from the first of Equatioms (3.23), i.e.,

v VgB /A, (yp-yy) - (tp-ty) g(SfL-So) (3.28)

p= VL.
It should be noted that each point in the x-t plane has a ''domain of

dependence'" and conversely a '"range of influence.'" Referring to Fig. 3.3,

the values of V and y at point T are dependent upon the values of

V and y at all points within the shaded curvilinear region of the x-t

plane, i.e., the domain of dependence of point T is the shaded region.

In Fig. 3.4, the values of V and y at point M will affect the
values of V and y at all points within the shaded curvilinear region of the
x-t plane, i.e., the range of influence of point M is the shaded region.

By applying Equations (3.25) through (3.28), the values of x, t, V,
and y may be determined for all points lying interior to the x-t plane.
Each computed point will be dependent upon previously computed points
and will in turn influence successively computed points.

Initial conditions

An initial condition must be known if solutions to an unsteady flow
problem are to be obtained. The term "initial condition' refers to the
state of the flow within the channel reach prior to the time at which
solutions of the unsteady flow equations are sought, i.e., at time t=0
on the x~t plane. In Fig. 3.5, the initial condition pertains to the
values of x, t, V, and y for points Iy, Iy, I3, I, and I5. Usually,
the points are evenly spaced along the channel reach.

Boundary conditions

Boundary conditions are necessary for a complete solution to an unsteady
flow problem and, indeed, the boundary condition usually describes the
unsteady disturbance to which the channel reach is subjected. Boundary
conditions refer to known relationships which exist between the unknown
variables x, t, V, or y at each end of the channel reach. These
relationships are independent of the unsteady flow equations, and they
must be valid throughout the interval of time for which solutions to the
unsteady flow equations are sought.

Referring to Fig. 3.5, the points U, Uy, and Up in the x~t plane are
upstream boundary points and D, Dj, and Dy are downstream boundary points,
The C- Characteristic Equations (3.24) are used for computing the unknown
variable associated with the upstream boundary points, and the C+
Characteristic Equations (3.23) are used for computing the unknown
variables associated with downstream boundary points. If boundary
points are not prescribed for an unsteady flow problem, the unknown
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variables x, t, ¥ and V associated with the points within and on the
shaded region of Fig. 3.5 are the only ones which can be computed
from the unsteady flow equations. Of course, this assumes that the
initial condition (points along the t=0 axis of the x—-t plane) has
been specified.

The following examples are boundary conditions which might be prescribed:

1. Upstream discharge hydrograph: A common upstream boundary is a
discharge hydrograph. In this condition, the discharge entering the
channel reach is-known as a function of time, i.e., Q = Q(t). Thus,
from continuity considerations, the independent relationship at the
upstream boundary is given by:

Q = A(t) V(t) , (3.29)

Referring to Fig. 3.5, it is assumed that the values of x, t, V, and

y at point R are known and it is desired to find the values of x, t, V,
and y at the upstream boundary point U. The C- Characteristic Equations
(3.24), where the subscript P is replaced by U, are applicable to an
upstream boundary point. Upon examining Equations (3.24), it is seen that
xy 1s known, i.e., xy = 0; thus, ty may be computed directly from the
second of Equations (3.24), resulting in:

ty = tg = xR/(VR - VgAR/BR) (3.30)
From Equation (3.29), Vi = Q/Ay énd\fhe first of Equations (3.24) becomes:

Q/Ay = YgBp/Ap vy = Vp + YeBp/hp yp + (tymtp) g(sz—_so) =0 (.31

This equation is non-linear with respect to the unknown yy due to the
presence of the term Ay. An iterative solution technique such as the
Newton-Raphson method can be used to solve Equation (3.31) for yy.
The Newton—-Raphson method is presented in Appendix A.

2. Upstream stage hydrograph: In this case, y = y(t), i.e., Yy is
known at any time t. Since xy = 0 and ty may be computed from
Equation (3.30), V,, may be directly computed from the first of
Equations (3.28), i.e.;

Yy T Vg R/ Oyip) - (5yty) 865 =5) (3.32)
3. Normal flow at the downstream boundary: This downstream boundary
condition is encountered when the channel is very long, in fact, long
enough such that the effects of any unsteady disturbance at the upstream
end of the channel have dissipated along the channel and are not noticed
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at the downstream section. The flow at this boundary is subject to the
restraints of normal flow as given by Manning's Equation (2.14) in which
the friction slope Sf is assumed to be adequately defined by the channel
bottom slope S,, i.e.,

v = 1:486 g y2 pors (3.33)
n o

Referring to Fig. 3.3, it is assumed that the values of x, t, V, and ¥
at point L are known, and it is desired to find these values associated
with the downstream boundary point D. The C+ Characteristic Equations
(3.23), where the subscript P is replaced by D, are applicable for
computing downstream boundary points. Upon examining Equations (3.23),
it is seen that xp is known since it is the location of the downstream
boundary, and ty may be computed directly from the second of Equations
(3.23), i.e.,

£y =t + Gopmx )/ (Vp+ JRATBY) @33
From Mannings equation (3.33):
_ 1.486
vy = =22 s ¥ % (3.35)

Then, the first of Equations (3.23) becomes:

Li% S‘oz’(2 anla + VBB JA vy = Vp - V8B /Ay
+ (tD*tL) g(Sf —So) =0 (3.36)
L

This equation is non-linear with respéct to the unknown y_ due to the
presence of the term Rp. The Newton—~Raphson iterative me%hod can be used
to solve Equation (3.36) for yp. Equation (3.35) is used to obtain Vp.

Finite Difference Approximations

The mathematical basis for finite difference approximations can be
derived from a Taylor series expansion. Consider the function U(x) in
which the dependent variable U is a known function of the independent
variable x as shown in Fig. 3.6. Its value at point P, i.e., x, is U(x).
The value of the function U at point Q, x + Ax, can be evaluated by
the Taylor series expansion about x, i.e.,

UGeHx) = U(x) + Ax U’(x)3+-%~Ax2 " (x) +-% Ax® U™ (x) +...(3.37)
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and its value at point 0, x - Ax, is:
UGe-Ax) = UCx) - Ax U' () + 3 4%% U"(0) = 2 8%° 0" (O +...(3.38)

in which U'(x), U"(x), and U'"" (x) denote respectively, first, second,
and third derivatives of the function U at point x, i.e., at point P
in Fig. 4.1. Subtraction of these expansions gives:

U(x + Ax) - U(x - Ax) = 28x% U'(x) + 0(Ax%®) (3.39)

where 0(Ax’) denotes terms containing third and higher powers of Ax.
Assuming these are negligible in comparison with lower powers of Ax,
it follows that:

- U(xtAx) - U(x-Ax)

U' (x) e (3.40)
i.e.,
u,. -U
L. -2 0
Up = =553 , (3.41)

with an error of approximation (truncation error) of order Ax?.
Referring to Fig. 3.1, it is seen that Equation (3.41) clearly
approximates the "slope of the tangent at P by the slope of the chord 0Q.
Equation (3.41) is known as a central-difference approximation.

If the function U(x) is subtracted from Equation (3.37), a forward-
difference approximation is obtained, i.e.,

U(x + Ax) - U(x) = Ax U'(x) + 0(Ax?) (3.42)
Thus:
Ut (x) = U(X*'AX; = Ux) | . (3.43)
i.ed,
U.-U
v P .
UP ~ —E%G;—- | (3.44)

with an error of approximation of order Ax. In Fig. 3.6, it is evident
that the slope of the tangent at P is approximated by Equation (3,44)
as the slope of the chord PQ.

Similarly, the expression for a backward-difference approximation is
obtained by subtracting Equation (3.38) from U(x), i.e.,

U(x) - Ulx - Ax) = Ax U' (%) + 0(A%?) : (3.45)
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Thus:

U (x) = U(x) ;xU(X—AX) (3.46)
i,e,, .
U, - U
P 0

with an error of approximation of order Ax. In Fig. 3.6, this is seen
to be an approximatlon of the slope of the tangent at P using the slope
of the chord OP.

In the application of the method of finite differences to the Saint-Venant
equations, the concept is first introduced of a so-called "x-t" plane.
As shown in Fig. 3.7, the x-t plane consisting of a rectangular net of
discrete points represents the continuous solutiocn domain defined by the
independent variables (x and t) in the Saint-Venant equations. The net
points are defined by the intersection of straight lines drawn parallel
to the axes of the x-t plane. Lines parallel to the x-axis are '"time
lines" and have a spacing of At called the '"'time step.”" FEach discrete
point in the x-t plane is identified by a subscript (i) which designates
the x-position and a superscript (j) which designates the time line.

The time and/or the distance steps must be equal in certain finite
difference schemes while in others they do not have to be equal.

Since the finite differences are only approximations to the original
partial differential equations, it is important that the error of
approximation be minimal. The error of approximation (truncation or
discretization error) arises from the omission of higher order terms in
deriving the finite difference expressions such as Equations (3.41),
(3.44), and (3.47). The condition where the truncation error approaches
zero as Ax and At approach zero is known as ''consistency.' Closely
related to the consistency of the finite difference scheme is the
property known as ''convergence," which is the condition in which the
solution of the finite difference approximation of the original partial
differential equation approaches the analytical solution of the
differential equation.

Another property of finite difference schemes is the so-called "numerical
stability." A scheme is numerically stable if numerical errors introduced
in the computations such as round-off of irrational numbers are not
amplified during successive computations such as to entirely mask the
true solution. Numerical instability is characterized by expanding
oscillations of the solutions of the dependent variables (depth and
velocity or discharge) with successive time steps.
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Fig. 3.7.~Finite difference approximations for explicit diffusion scheme.
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Explicit Finite Difference Methods

The term explicit refers to those finite difference methods (schemes)
that advance the solution of the Saint~Venant equations point by point
along one time line until all the unknowns associated with that time line
have been evaluated. Then, the solution is advanced to the next time line
in the x-t plane. In an explicit scheme, the spatial derivatives and
non-derivative terms are evaluated on the time line t] where the values
of all variables are known. Only the time derivatives contain unknowns.
Thus, in an explicit method, two linear algebraic equations are generated
from the two Saint-Venant equations at each met point (node).

Since the two equations can be solved directly for the unknowns,
the equations are described as "explicit."

The development of explicit methods resulted from the pioneering
work of Stoker [1953] and Isaacson et al. [1954, 1956, 1958] who
applied an explicit scheme to route floods in the Ohio River, the
junction of the Ohio-Mississippi Rivers, and the Kentucky Reservoir.
Among those who have studied explicit methods are Amein and Fang [1969],
Martin and DeFazio [1969], Ragan [1966], Liggett and Woolhiser [1967],
and Strelkoff [1970]. Also, Dronkers [1969], Balloffet [1969],
Kamphuis [1970], and Prandle and Crookshank [1974] applied the
explicit method to analyze tidal movement in estuaries. Garrison
et al. [1969] and Johnson [1974] applied the explicit method to simulate
flood routing in rivers and reservoirs. '

Many variations of the explicit method have been developed. Some
were developed specifically for rapidly varying unsteady flow in which
bore formation was likely, e.g., the Lax-Wendroff two-step scheme
reported by Richtmyer [1957]. Other popular schemes include the leap~
frog scheme, the staggered scheme, which was used by Isaacson et al.
[1958], and the diffusion scheme, which was developed for gradually
varying flows but also was adapted for discontinuous unsteady flows
such as tidal bores by Terzidis [1968].

In order to illustrate the principle of the explicit method, the
versatile and yet simple diffusion method is chosen. Letting K represent
any variable or functiom, and referring to Fig. 3.7, time and spatial
derivatives at node i are approximated by the following difference
quotients:

i+l _ %3
KX
3K i 1
ot At (3.48)
3 ¢
sk, N "M (3.49
ox 2Ax ‘
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where:

J j
. K + K
K - —i'f—l—z——i“—‘—l (3.50)

All non-derivative terms are approximated by Equation (3.50). Equation
(3.48) is a forward difference approximation for the time derivative,

and Equation (3.49) is a central difference approximation for the spatial
derivative. Two properties of the diffusion scheme should be noted.
First, the scheme is explicit since the spatial derivatives and non-
derivative approximations are evaluated at thi time line tJ and are
therefore known. The only unknown is the K%+ term in the time derivative.
The second distinguishing property is the use of the average value of

K{ (Equation (3.50)) in the time derivative. This expression characterizes
the diffusion property of this particular explicit difference scheme.
Should Ea be replaced by Ky, the scheme would be numerically unstable,
which illustrates the subtleties of finite difference solutioms.

The conservation form of the Saint-Venant equations is chosen for
applying the diffusion explicit solution scheme, these equations which
were previously presented as Equations (2.55) and (2.56) are presented
here for convenience, with A, neglected, B taken as unity, and the
eddy loss S, and wind effect Wg neglected, i.e.,

3Q , dA _ . ‘

2 : .
_@.+M+gA(§_}l+s)_qV =0 (3.52)
ot 9x 9x f x

Before they can be approximated by explicit diffusion difference
approximations, the term 0A/3t in Equation (3.51) must be replaced by:

%A 53y |
T B oy (3.53)

where y is the depth of flow and is related to the water surface
elevation h by the expression:

y=h-z (3.54)
in which z is the elevation of the channel bottom above a known datum.
Also, it is necessary to replace the term 9h/3x in Equation (3.52)

by the expression:

dh _ 3y _ (3.55)
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Substituting Equation (3.53) in Equation (3.51) and dividing through
by B yields:

9y ;1930 _g_
5t TB3x B 0 (3.56)

Substituting Equation (3.55) in Equation (3.52) yields:

30 . 3Q%/A dy
+ (AN - =
3t Tox ‘gACBX So + Sf) Ve 0 (3.57)
Upon substituting the diffusion difference expressions given by
Equations (3.48)-(3.50) in Equations (3.56) and (3.57), the following
algebraic difference equations are obtained:

3+ _ ;_[ i i )
i 77 Y T Vi) 1 |
At 1[5 3
Z{Bi+l * Bi-lJ
h| k|
Q.. — Qo . .
St S Y IR 4 h -
2hx 2[qi+l/2 * q1—1/2] o (3.58)
J+L_ { 3 ] 2/av3  _ 02/my3
%G Gy * Goaf | @/ - @A,
At 2Ax
k| h|
. Y. - Yy .
3 J i+l i-1 1.3 j
+ g={Ad +A._)-—-—-——-—-——-—s + s +s
2[ i+1 i-1 2Ax o 2{ fi+l fi—l]
-1 A -0 .

All terms having a j superscript are known either from the initial
condition of flow just prior to the application of the Saint-Venant
unsteady flow equations or from a previous unsteady flow solution.
The_only unknowns are those terms having a j+1 superscript, namely
yJ *1 in Equation (3. SSl and QJ+l in Equation (3.59). Solving
Equation (3.58) for yJ , we obtain:

i _ Al
U~ Gog
2Ax

i+l _ i At
v (yJ +yl ) -
Ti-1 1 48y
2714 -l

_i,3 h| ' _
5 Q4170 ¥ UG-1/2) ‘ (3.60)
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i+
Solving Equation (3.59) for Qi 1, we obtain:

L _ L] Iy 2Bt Feaz L (g2/a)]
QG =% T %) T mE EQ iy = @/ A)i—;}

i
yi. -y
- ﬂ_t_(Aj + Aj ) _iﬂ___.__}.i - S -+ _]:.(Sj T+ Sj )
2 i+l i~1 2Ax o 2 fi+1 fi—l
At i 3 -

Thus, E%uations (3.60) and (3.61) provide a direct solution for y?+l
and Q3+ , which can be used to ebtain all the values for y and Q on the
time 1ine j+1. These values are then denoted by the j superscript and
the next time line (denoted as j+2 in Fig. 3.7) is considered as the
unknown time line j+1 in the application of Equations (3.60) and (3.61).
In this way, the depth y and discharge Q are determined for all nodes
along the channel and forward into the time domain.

The numerical stability of the simple diffusion difference scheme has
been analyzed by a number of investigators. Terzidis [1968] applied the
so-called von Neumann method of analyzing a linearized version of
Equations (3,51) and (3.52) and found that the time step At must be
restricted in size to provide numerical stability. The restriction in
At is given by the lesser of the following two inequalities:

Ax, S
At £ = [minimum for all i] (3.62)
&, + /5D,
ATd B'i

2.208 AR,
1 1

IA

At [minimum for all i] (3.63)

g o} 19|
where R is the hydraulic radius.

The inequality given by Equation (3.62) is known as the Courant condition
after the pioneering work of Courant et al., [1948]. It is derived for a
frictionless flow and is dependent upon the flow velocity and the celerity
(propagation speed) of small disturbances. When friction is considered,
the second inequality given by Equation (3.63) is derived in addition to
the Courant condition. Equations (3.62) and (3.63) or some slight
modification are applicable to most explicit schemes.
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Inspection of the stability criteria of Equation (3.62) indicates that
the computational time step is substantially reduced as the hydraulic
depth (A/B) increases. Thus, in deep rivers, it is not uncommon for
time steps on the order of a few minutes or even seconds to be required
for numerical gtability even though the flood wave may be very gradual
having a duration in the order of weeks. Such small time steps cause
the explicit method to be very inefficient in the use of computer time.

Another restriction of explicit schemes is the use of equal Ax distance
steps. Although this can be relaxed somewhat by using weighting factors,
it can be disadvantageous for flows in natural river systems.

Implicit Finite Difference Methods

The term implicit refers to those finite difference schemes that
advance the solution of the Saint-Venant equations from one time line
to the next simultaneously for all points along the time line (i.e.,
along the x-axis of the channel). Thus, in an implicit method, a system
of 2N algebraic equations is generated from the Saint-Venant equations
applied simultaneously to the N net points along the x-axis. The system
of algebraic equations so generated may be either linear or non-linear
depending upon the type of implicit method chosen. This aspect will be
discussed later.

Implicit methods of finite differences were developed because of the
limitations on the size of the time step required for numerical
stability of explicit methods. The use of implicit schemes to obtain
solutions of the Saint-Venant equations was suggested by Isaacson
et al. [1956] and first appeared in the-literature in the early 1960's
with the work of Preissmann [1961], Preissmann and Cunge [1961], and
Vasiliev et al. [1965]. Later, Isaacsonm [1966], Abbott and Ionescu [1967],
Amein [1968], Baltzer and Lai [1968], Dronkers [1969], Amein and Fang
[1970], Gunaratnam and Perkins [1970], Kamphuis [1970], Contractor
and Wiggert [1972], Quinn and Wylie [1972], Fread [1973b,c], Chen [1973],
Chaudhry and Contractor [1973], Fread [1974a,b], Greco and Panattoni
[1975], Amein [1975], Amein and Chu [1975], Chen and Simons [19751,
and Fread [1976] reported their research with implicit methods for
solving the Saint~Venant equations.

An essential difference between explicit and implicit methods is the
implicit methods are computationally stable for all At time steps
while explicit methods are numerically stable for those time steps
less than the critiecal value determined by the Courant condition,
Equation (3.62), or the friction criteria, Equation (3.63). Analyses of
the numerical stability of various implicit finite difference schemes
applied to the Saint-Venant equations have been reported by Abbott
and Ionescu [1967]1, Leendertse’ [1967], Dronkers [1969], Gunaratnam
and Perkins [1970], Fread [1974a], and Liggett and Cunge [1975].
Within the simplifications required in making the numerical stability
analyses, the various implicit methods were found to be unconditionally
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linearly stable, i.e., the simplified linearized versions of the
Saint-Venant equations were numerically stable independent of the

size of the time or distance steps. Amein and Fang [1970] and Fread
[1973b] reported that extensive numerical experiments indicated the
implicit methdd applied to the complete Saint-Venant equations was
numerically stable for a wide range of time and distance steps; however,
Fread [1973b] and Chaudhry and Contractor [1973] found that instability
could be encountered for certain types of four~point schemes if the time
steps were abnormally large for the case of rapidly varying transients.

Another basic -difference between explicit and implicit methods is the
latter is more computationally complex than the former. Depending on
the type of implicit method (linear vs. non-linear), the number of
computations during a time step increases by a factor of approximately
1.5 to 3.0 compared to the requirements of an explicit method.

This increase is much greater if the method of solving the system of
simultaneous equations is not an efficient method which makes use of
the banded structure of the coefficient matrix of the system of
equations. If the implicit method is linear, only one solution of the
system of equations is required at each time step. However, if the
implicit method is non-linear, an iterative solution is necessary,

and this requires one or more solutions of the system of equations

at each time step.

Although many variations of the implicit method have been developed,
most of them can be categorized as four-point or six-point schemes
which may be applied to the Saint-Venant equations so as to produce
linear or non-linear difference equations.

The four-point scheme is shown in Fig. 3.8. The spatial derivatives
and non-derivative terms are positioned between adjacent time lines
at point M by weighting factors of © and (1-0), where @ is defined in
Fig. 3.8 as At'/At. Letting K represent any variable, time and spatial
derivatives at point M are approximated by the following difference
quotients:

154, 34 L1od o
. 2% TR 5&G T Ky) PP
ot T At At :
J+1 _ 3Ly oy ed
x O - K ) N (1-0) ®yyq ~ K3) 3.65)
ox Ax Ax ¢

and non~derivative terms at point M are approximated by:

j+1 o, L3+l V 3 3
L0y 2+ Ripp) | 10) (K12+ Kisy) (3.66)
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Fig. 3.8.~—Weighted four-point implicit scheme.
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The four-point scheme is implicit for any value of © greater than
zero and explicit if O is zero. A O of 0.5 yields the so-called "'box
scheme" used by Amein and Fang [1970], Contractor and Wiggert [1972],
and Fread [1973c]. A fully implicit or backward difference scheme
results when O takes on the value of unity. The fully implicit scheme
was used by Baltzer and Lai [1968], Kaumphis [1970], and Amein and Chu
[1975]. The generalized weighted four-point scheme in which @ is
retained as a variable in the formulation of the difference approximation
of the Saint-Venant equations was first used by Priessmann [1960]
and later by Quinn and Wylie [1972], Fread [1973b, 1974a, 1974b, 1976]
and Chaudhry and Contractor [1973].

The weighted four-point scheme as shown by Fread [1974a] is
unconditionally linearly stable for any time step size if O obeys the
inequality 0.5 € © £ 1.0. Also, the scheme has second-order accuracy
when © = 0.5 and has only first-order accuracy when © = 1.0.

The four—-point scheme has been applied to the Saint-Venant equations
such that the resulting difference equations are either non-linear or
linear. The formulation of the non-linear difference equations is
straight forward and results when the difference approximations,
Equations (3.64)-(3.66), are substituted directly into the Saint-Venant
equations. However, the linear formulation requires the linearization of
non-linear terms in the Saint-Venant equations by: (1) modifying the
partial differential equations so that they do not contain non-linear
terms and (2) using finite difference expressions which linearize
the non~linear terms. The non~linear formulation using the four-
point scheme was investigated by Baltzer and Lai [1968], Amein and
Fang [1970], Contractor and Wiggert [1972], Quinn and Wylie [1972],
Fread [1973b, 1974a], and Amein and Chu [1975] among others.

The linear formulation was used by Preissmann [1961], Preissmann and
Cunge [1961], Strelkoff [1970], Chen [1973], and Chen and Simons [1975].

The weighted six-point scheme is shown in Fig. 3.9. Again, using K
to represent any variable, the time and spatial derivatives are
approximated at point M by the following difference quotients:

At g3
& .1 L (3.67)
ot At
or
3 | b j+1 _ 3]
a1 i~ X)) | K Ki—lﬂ (3.68)
t 2 At At *
L AL e aved - wd
&K O&; 1) N (1-0) (3,5 = K5_4) (3.69)
3x 2Ax 2Ax °
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Fig. 3.9.—~Weighted six—point implicit scheme.
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and non-derivative terms at point M are approximated by:

k =0k} + -0 k) (3.70)
The six-point scheme is implicit for any value of @ greater than zero.

It is unconditionally linearly stable if O obeys the inequality

0.5 < O® < 1.0. The convergence properties of the six-point scheme

are similar to those of the four-point scheme. A non-linear six-point

scheme with @ = 0.5 was investigated by Abbott and Ionescu [1966] and

a linearized six-point scheme with @ = 1.0 was proposed by Vasiliev

et al. [1965]. Both of the six-point schemes used by Abbott and by

Vasiliev treat the boundary conditions in a more complicated and

less desirable manner than they are treated in the four—point schemes.

Also, the six-point schemes are not as well suited to irregular Ax

distance intervals as the four-point schemes.

- Application of an implicit scheme to the Saint-Venant will not be
jllustrated in this section since such an application is presented in
detail in the preceding section.
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4, WEIGHTED FOUR-POINT IMPLICIT METHOD
Introduction
In this section, the weighted four-point scheme is used to obtain

an implicit finite difference solution of the conservation form of
the Saint-Venant Equations (2.55) and (2.56), which are repeated here

- for convenient reference, i.e.,

(A +A)
_0. _— g =
a_cz_ <892/A2+A( +S.+S)-Baqv +W B=0 (4.2)

The comservation form of the Saint-Venant equations is chosen because
this form provides the versatility required to simulate a wide range of
flows from gradual long-duration flood waves in rivers to abrupt waves
such as caused by dam breaks. The conservation form of the differential
type Saint-Venant equations when approximated by finite differences
results in equations resembling the "integral' version of the unsteady
flow equations [Liggett, 1975] rather than the differential form as
developed in section 2. In the integral form of the unsteady flow
equations, the dependent variables Q and h do not have to be continuous
as is necessary in the differential form of the Saint-Venant Equations
(4.1) and (4.2). Since the finite difference form of Equations (4.1)
and (4.2) mimics the integral form of the unsteady flow equationms,
the water surface h may be discontinuous, in a finite sense, as in the
case of waves having abrupt faces.

The weighted four-point implicit scheme is chosen rather than an
explicit scheme. Explicit methods, although simpler in application
than implicit methods, are not suitable for simulation of long-term
unsteady flow phenomena such as flood waves in rivers because they are

 restricted by mathematical stability considerations to very small At

computational time steps (on the order of a few minutes) as governed

by Equations (3.62) and (3.63). Such small time steps cause the explicit
methods to be very inefficient in the use of computer time. Implicit
finite difference techniques, however, have no restrictions on the size
of the time step due to mathematical stability; however, convergence
considerations may require time steps to be limited to something less
than a few hundred times that required by an explicit method,

depending on the hydraulic properties of the unsteady flow phenomena

and the size of the Ax distance step.

The implicit method is preferred over the method of characterisites
because the former enables a more direct approach for simulating
unsteady flows in natural channels such as rivers, reservoirs, and
estuaries. Such natural channels have irregular cross-sections,
off-channel storages, and the practical requirement for unequal
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distance steps. Each of these introduces unwarranted complications
into the method of characterisitecs which detract from any of its
inherent advantages pertaining to stability and convergence.

Of the various implicit schemes that have been developed, the
weighted four-point scheme first used by Preissmann [1961] and
recently by Quinn and Wylie [1973], Chaudry aund Contractor [1973],
and Fread [1973c, 1974b, 1976] is considered most advantageous since
it can readily be used with unequal distance steps and its stability-
convergence properties can easily be controlled.

The weighted four-point difference approximations are applied
directly to Equations (4.1) and (4.2) which results in a system of
algebraic non-linear difference equationms. Although linear four-point
implicit formulations such as advocated by Chen and Simons [1975] and
others do not necessitate an iterative solution of the system of
equations, the option of a non-iterative solution procedure is
available with the four-point non-linear formulation. This arises
from the way in which the Newton-Raphson procedure for solving
systems of non-linear equations is applied. The manner in which
the non-linear formulation mimics the linear formulation will become
apparent when the Newton-Raphson solution procedure is described later
in this section. Thus, the non-linear formulation possesses its own
inherent advantages while still allowing the computational advantage
associated with the linear formulation.

Numerical Properties

The numerical properties (stability aﬁd convergence) of the weighted
four-point implicit scheme have been investigated by Cunge [1966],
Fread [1973b, 1974a], and Chaudry and Contractor [1973].

Some investigations [Fread, 1973b; Chaudry and Contractor, 1973] were
based on numerical experiments to determine the four-point scheme's
numerical properties in an empirical manner. Although numerical
experiments enable the investigator to study the four-point scheme
applied to the complete Saint-Venant equations, the findings are
limited to the range of conditions studied.

Other investigators [Cunge, 1966; Fread, 1974al used analytical
techniques tc investigate the four-point scheme's numerical properties.
Although the results from analytical techniques are applicable over a
broad range of conditions, the complete Saint-Venant equations must be
linearized and somewhat simplified before the four-point scheme is
applied. Thus, the results of the analytical investigation are, in
the strictest semse, only applicable to the linearized equations;
however, experience has proven that considerable understanding of the
numerical properties of non-linear equations can be attained from this
kind of analysis.
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The following is a summary of the numerical properties of the
weighted four-point scheme as reported by Fread [1974a]. The four-
point scheme as described by Equations (3.64)-(3.66) was applied to
the following linearized model of the complete non-linear Saint-Venant
equations: .

3h 3V _
ot + Ho x 0 . o ‘(4°3)
ov ah _

t T B Tkv=0 (4.4)

in which k is the linearized friction term given by:
gAVo n?

k= iii—ﬁ;qy (4.5)

where V is a small perturbation in velocity above a mean velocity V,,
h is a small perturbation in depth above a mean depth H,, 8 is the
acceleration due to gravity, and n is Manning's roughness coefficient.

The stability of the four-point scheme applied to Equations (4.3)
and (4.4) was analyzed using the von Neumann technique [0'Brien et al.,
1951]. An expression for stability (in the sense of the von Neumann
conjecture that linear operators with variable coefficients are stable
if all their localized operators in which the coefficients are
taken constant are stable) is given by the following expression:

in which:
a=gH (At/Ax)? tan? (mAx/L) 4.7)
b = kAt | (4.8)

where L is the wave length, i.e., the wave celerity times the duration
of the wave. If lk] < 1, independent of the values of Ax and At, the
errors due to truncation and round-off will not grow with time and

the difference equations are unconditionally linearly stable. This

is the case when 1/2 < © £ 1. The scheme is weakly stable (i.e.,

ik! = 1) when © = 1/2 and k approaches zero. Thus, when friction is
negligible, the solution tends to oscillate about the true solution;
and since the oscillations are bounded and are not large relative to
the solution, the condition is not an unstable one but rather is known
as a "computational mode." If @ is increased to about 0.55 or 0.60,
the computational mode is eliminated.
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The convergence porperties of the weighted four-point scheme were
investigated qualitatively in terms of a truncation error, E, which
was found to have the following form:

E = (20-1) 0(At) + 0(At)? + 0(Ax)? ; (4.9)
where 0 indicates "order of." When O is unity, the truncation error is:
E = 0(At) + 0(At)? + 0(Ax)? ' (4.10)

which clearly shows that the fully implicit scheme has only first-order
accuracy due to the presence of the term 0(At). When O is 1/2 the
truncation error is:

E = 0(At)? + 0(Ax)? | (4.11)

which shows the box scheme to have higher (second-order) accuracy.
As O departs from 1/2 and approaches unity, the scheme changes from
second order to first order as the leading coefficient (20-1) of
the first-order term increases from zero to unity.

Convergence of the weighted four-point scheme was further investigated
quantitatively using a Fourier technique similar to that used by
Leendertse [1967] in which convergence ratios of the finite difference
solution to the analytical solution were determined for wave damping
(attenuation) and celerity (velocity). The following expression of the
damping Cd and celerity Cc’convergence ratios were obtained:

_ - "
1+ (ze-z)zcnc tan 7r/nL)2 + (6-1) D,
1 + 402 (o, tan Tr/DL)f +© D
Cy=- : (4.12)
(-0.5 D '
e

£)

T 2
-1 [: /i6(Dc tan w/DL) D¢ ;]
tan 7

+ 80 (0-1)(D tan 1T/DL)2 + (20-1) D :
c = < (4.13)

c %—z D_ /1-(0.5 D)?
in which:
D, = L/Ax , (4.14)
D_ - _ﬁ_::{, m; ‘ (4.15)
D, = KAt | (4.16)



and the parameters L, Hj, and k are as previously defined in connection
with Equations (4.3)-(4.5).

In Fig. 4.1, the convergence ratios Cy and C, are shown plotted for
a range of values of Dg (the Courant number) and Dy, (the wave
discretization number) with © = 0.5 and D¢ = 0.0. The damping
convergence ratio Cy is unity for all D, and Dy values, i.e., there
is no numerical damping for any choice of Ax and At when @ = 0.5 and
friction is negligible. However, the celerity convergence ratio Ce
approaches unity only when Dy becomes large for all D, values greater
than unity, i.e., the numerical celerity approaches the analytical
celerity for time steps greater than that defined by the Courant
condition (D, = 1) as the wave discretization number becomes large
(small values of Ax relative to the wave length L).

The importance of the © parameter is illustrated by the convergence
ratios shown in Fig. 4.2. A comparison of the Cy curves in Fig. 4.2
where © = 1.0 and Dg = 0.0 with those in Fig. 4.1 where © = 0.5 and
Df = 0.0 clearly shows the increase in numerical damping errors due
to the O parameter increasing from 0.5 to 1.0. A comparison of the
C. curves in Figs. 4.1 and 4.2 also shows some increase in the
numerical celerity errors when the © parameter is increased from
0.5 to 1.0.

Fig. 4.3 shows the convergence ratios with © = 0.5 and D¢ = 1.0.
It is apparent that Cy only approaches unity as Dy increases.
As D, increases, larger values of Dj are required for Cy to approach
unity. The celerity convergence ratio C,, in Fig. 4.3, is slightly
different from the C, curves of Fig. 4.1. The increase in the
dimensionless friction parameter Dy causes the C. curves in Fig. 4.3
to be slightly displaced to the left of those in Fig. 4.1, which
indicates that as friction increases numerical errors in the celerity
are reduced for given values of Ax and At.

A summary view of the numerical properties of the weighted four-
point implicit scheme indicates that:

1. The scheme is unconditionally stable for 0.5 £ 0 < 1.0.

2. The scheme is most accurate when © = 0.5 and least accurate
when O = 1.0.

3. The weakly stzable condition associated with €@ = 0.5 when friction
is negligible can be avoided by increasing © to about 0.55 and thereby
minimizing the loss of accuracy as © departs from 0.5.



NUMERICAL DAMPING
ANALYTICAL DAMPING

Cq =

Fig.

NUMERICAL CELERITY

4.1,a,~-Damping convergence ratio, C4, against D for box scheme

ANALYTICAL CELERITY

Cc"—

Fig. 4.1.b.——Celerity convergence ratio, C

i}
1.0
0.9

0,8

0.6

0.4

o
N

[ T T VT TIT] 1T T T 11T 1

Dc=1, 2, 5, 10, 20, 50, 100

©=0.5
Df"0.0

P11t 11

i

RENER]

N REEE I 1]
) 10 100

DL

with variations in Dc and Dg = 0,0,

LY

D=1
Dc-"z

8=0.5
D¢ =0.0

R | .

EAE

1000

——

100
DL

o

with variations in Dc and Df 0.0.

4-6

1000

» against Dj for box scheme



NUMERICAL DAMPING

1000

| T TTTITTT ] i
go.a—-
o _
= — -
3
5, 0.6 [~ -
3
e | 20 . .
>-
2 0.4 {— —
= 39/ 100
< e —
" 02— 6=1.0  —
O
o " D¢=0.0 |
0.0 L [+ T 1111l RN
10 100
D,
Fig. 4.2.a.--Damping convergence ratio, C,, against D. for backward
. implicit scheme with variations in Dc an Df = 0.0.
.0 T T T 1177,
C;O.S— Dc=[
el |
il
Slo 0.6
a{d
3l
A
g&JO.A
2: L
" 8:=1.0
o 02 D§=0.0 |
(s} - ! . -
0.0 | Lt SO A N A B A

Fig. 4.2.b.—-Celerity convergence ratio, Cd’ agains

10 100
O,

implicit scheme with variations in Dc and

4-7

S

1000

t D. for backward



i T THH T VP T I

©=0.5

1.6

Df =1.0

NUMERICAL DAMPING
ANALYTICAL DAMPING

1.0~
o RN L 1T 1T T1il T L i
10 100 1000

Fig. &.3.a.——Damping convergence ratio, C,, against Dj for box scheme
with variations in Dc and Df = 1.0.

T T 11171 T T 11171 T T TTTIT
1.0 }— \Dc=t —— - —

— Dc'.- 2

o
®
]
|

NUMERICAL CELERITY
ANALYTICAL CELERITY
o (=]
K9 -4
1 |

1.0 7]

—

L et
10 100 ' 1000
DL

M

Fig. 4.3.b.—--Celerity convergence ratio, Cc, against DL for box scheme
with variations in Dc and Df = 1.0.

4-8



Finite Difference Equations

The weighted four-point implicit scheme is shown in Fig. 3.8.
It should be recognized that the Ax distance intervals may be unequal
and the At time intervals may also be unequal. The weighting
parameter @ is defined in Fig. 3.8 as At'/At. The weighted four—point
finite difference approximations were given by Equatioms (3.64)-(3.66)
and are repeated here for convenient reference. Letting K represent
any variable, the time derivative is approximated by:

j+1 ”j+l 3 j
i + K3 - K, - K,
+
aK - i+1 i i+l (4.17)

at 2At

and the spatial derivatives and non-derivative terms are positioned
between adjacent time lines according to weighting factors of O and
(1-0) by the following approximations:

j+1 _ L3+l i _
3K Oy = K ) + (1-0) (Kigg ~ K5) %.18)
ox Ax Ax :
K= 5 - + (1—@)~—-—7{~———— (4.19)

Upon substituting Equations (4.17)-(4.19) into the conservatiod form
of the Saint-Venant Equations (4.1) and (4.2), the following difference

equations are obtained:

(Qj+l _ Qi+l)

i+l i h|
© ﬁxi a3 93
j+1 j+1 3 _ j
(A+Ao)i + (A+Ao) 141 (A+Ao)i (A+Ao)i 4|
+ AL = 0 (4.20)
3
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j+1 j+1 2 23+ j+1
@™+l - ol - dd,) ‘o BQ* /A7, - BF/A);
2Atj Axi

(hJ +1 _ h:} +1)

—j+1| i+l =+l | = | a3 R i
+ gAi Ao + sf. + se (_qux)i + (UfB)i
i i i_
@@/ml, - @F/m] @l - nd)
- i+l i —j| i+l i =i |
+ (1-0) Ax, + gAl Ax, + Sf. +S
N i i i
- @oyl s amil =
(qux)i + (wa)j.L 0 (4.21)

Upon multiplying Equation’(4.20) and (4.21) by Ax., the following
are obtained: ,l

g+l j+1 —j+1 =3
e[qiﬂ - - an) v aofdl,, - o - ax)

J+1 h| h} -
+ (A+A ) (A+Ao)i - (A+A°)i+]] =0 (4.22)

Ax

e @+
3

+odl-od -+ e[@q /DI - eIt

e ae N R So B, T N S —j+1
+ gAY [hi+1 hy ~ + Sf. Ax, + S Axi

i

- B ax + @EIT A xi} * (1~O)]:(BQ2/A)‘;_1

P O 1 0 R R~ RN
(BQ /A)i + gAs [h1+l hi + Sfj_ Axi + SeiAxi]
| Ty -
- (,qux)i Axi + (WfB)i Axi:] 0 (4.23)
in which:
- B. + B
By =% : : (4.24)
A, + A
- AT AL
Ai = > (4.25)
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= By T By
B, = (4.26)
—2 L - p—
£, 2.208 A2 R.*A (4.27)
1 1
— Qo+ Q...
Q; = _3;__2__1_*:_1_ (4.28)
Ry = A;/B; | (4.29)
K, ]
T = i Q. - 2
Se. = 2ghx. [(A):Hl (A):ij (4.30)
p N 1
. s= =
Wf. = Cw’(cos w)“{v ' Vr, (4.31)
1 1 1 1
vr:.L = :vwi +Q /A, (4.32)

The bar (—) above the variables represents the average of that particular
variable over the reach length Ax between the ret points i and i+l. _
The subscript i associated with q, A, B, Sf, Q, R, Sga» Wf, V and V,
represents the number of the reach, %Ax ) rather than the node

number. Node numbers commence with 1 and terminate with N, while

reach numbers commence with 1 and terminate with (N-1).

Equation (4.22) is the four-point finite difference equation which
approximates the Continuity Equation (4.1), and Equation (4. 23) is the
difference equation which approximates the equation of motion,

Equation (4.2). All terms having a j superscript are known either
from: (1) initial conditions, i.e., the state of the flow as described
by h and Q for all ncdes at time t=0 when the Saint-Venant equations
first are applied, or (2) a previous solution of the Saint-Venant
equations. Other terms must be specified independent of the solution
and are theriiore'Ezown;+§hese+ire g,lei, Bi, Kei, CWi’ Vwi'

i 3 ] h| j+
The terms A Ai+l’ Bi . Bi+1’ ni
known llnear or non-linear functions of the basic unknowns which are
j+1 jH J+l J+1
Q ’ Q1+1’ i °? by it+l”
and (4.23), there are only four that are unknown, namely Q
hJ+1

are unknown; however, they are

Thus, of all the terms in Equations (4.22)
j+1 QJ +1
b i+l 3

s h;+l; however, these are raised to powers other than unity such

that Equations (4.22) and (4.23) are non-linear.

4-11



Since there are four unknowns and only two equations, a solution is
not possible. However, if Equations (4.22) and (4.23) are applied to.
each of the (N-1) rectangular grids shown in Fig. 4.4 between the
upstream boundary (i=1) and the downstream boundary (i=N), a system
of (2N-2) non-linear equations with 2N unknowns is obtained. Then,
prescribed boundary conditions, one at the upstream boundary and omne
at the downstreanm boundary, provide the necessary additional two
equations required for the system of non-linear equations to be determinate.

Boundary and Initial Conditions

Boundary conditions must be specified in order to obtain solutions to
the Saint-Venant equations. This was shown in section 2 in connection
with the "method of characteristics" and the necessity of boundary
conditions in the implicit method has been shown. In fact, in most
unsteady flow problems, the unsteady disturbance is introduced into
the flow system at the boundaries (extremities of the flow system
as shown in Fig. 4.4) by the so-called boundary conditions.

The upstream boundary condition can be specified as:

1. A known stage hydrograph or water surface elevation in which hl
is known as a function of time, expressed mathematically as:

A (4.33)

in which h'(t3+1) }ilthe known water surface elevation at the upstreanm
benindary at time t s OT

2. A known discharge hydrograph in which Ql is known as a function
of time, expressed mathematically as:

j+1

_ oatgedtl
0 - Qe

) =0 : (4.34)

in which Q'(t3+l) is the known discharge at the upstream boundary at
time tJ74, ’

Stage is related to the water surface elevation by the datum of the
gage used to measure the stage. Thus:

h=s+ Gé (4.35)

where s is the stage and Gy is gage zero or elevation of the zero point
on the gage above a datum plane such as mean sea level (m.s.l.).
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Fither of the upstream boundary conditions is satisfactory; the one
chosen for use is determined by its availability and convenience.
1f h'(tJ ) is used, Q' (t3+l) will be determined as the Saint-Venan
equations are solved at each time level, eI+, Likewise, if Q' (t3+1)
is specified, K" (t3+ ) is determined from the solution of the Saint-

Venant equations at each time level, ti
The downstream boundary can be specified as:

1. A koown stage hydrograph or water surface elevation in which h
is known as a function of time such as an observed or predicted tlde,
expressed mathematically as:

j+1

by

. 41, . : ]
in which h"(tJ 1) is_the known water surface elevation at the downstream
boundary at time 3t or

- wvedtly = o (4.36)

2. A known discharge hydrograph in which Qy is known as a function
of time, expressed mathematically as:

0 - Q"(tj+1) =0 (4.37)

F+1

in which "{t ) is the known discharge at the downstream boundary
>

at time .t

3. A known relationship between stagé and discharge such as a
rating curve, expressed mathematically as:

j+1 h§I-+l . (4.38)

j+
in which f(hy h> 1) is the rating curve or known relationship between

stage and dlscharge.

Typical reconstitution simulations, in which stages and discharges
at intermediate locations along a river are computed and compared
with observations, have as an upstream boundary condition the observed
stage hydrograph while the downstream boundary condition is an observed
stage hydrograph also. However, the boundary conditions for a
reconstitution simulation may be any combination of Equations (4.33)
through (4.38). It should be recognized, however, that if discharge
hydrographs are usad for both the upstream and downstream boundary
conditions, any error in the initial conditions (the initial water
surface elevations and discharges at all computational (node) locatiomns
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along the river between the upstream and downstream boundaries when
the simulation is started) will be perpetuated in the computations.
This is not the case when any of the other possible combinations of
boundary conditions are used. In fact, in these combinations of
boundary conditions, small errors in the initial conditions will
dampen as the computations proceed in time such that after a few
time steps the original errors will represent a negligible portion
of the computed values of h and Q.

Typical forecasting (prediction) simulations, in which the stages
and discharges at points removed from the boundaries are the desired
products of the computations, the upstream boundary may be either a
discharge on stage hydrograph while the downstream boundary is usually
. a rating curve. In the case of a stage hydrograph at the upstream
boundary, the initial phases of the hydrograph may be composed of
observed values while the later portions of the hydrograph are the
computed (predicted) values from another model applied to an upstrean
reach of the river above the location of the upstream boundary.
Another type of forecasting simulation could have a stage hydrograph
as a downstream boundary; this would occur when the downstream boundary
is primarily influenced by tidal action, in which case the predicted
tide would be used as the known stage hydrograph. When reservoir flows
are being simulated, the upstream boundary is usually a discharge
hydrograph while the downstream boundary may be a stage~discharge
relation determined by natural controls or by man—-operated controls
according to some "rule-curve' operating procedure.

The downstream boundary condition of a stage-discharge relation
may be one of several types. These include the following:

1. Single value rating curve in which the stages and corresponding
discharges are expressed in tabular form with linear interpolation
used for intermediate values. Such a rating curve is depicted in
Fig. 4.5. The downstream boundary condition for a single value rating
curve expressed in tabular (piece-wise linear) form is given by the
following expression: :

. Q= Q) ..
+1 k+1 k j+1
3 - g+ (i) T - h )| =0 (4.39)
N k (hk+1 hk) N k

where the stages and discharges in Equation (4.39) are defined in
Fig. 4.5. Once the value of the expression inside the brackets of
Equation (4.39) is obtained, it replaces the term f(hN) in

the boundary condition given by Equation (4.38).

2. Loop rating curve in which the relation between stage and
discharge is not a unique function dependent only on the values of
stage and discharge but is also a function of the friction slope Sg-
If S¢ is approximated as the water surface slope —(0h/3x), them a loop
rating relationship similar to that shown in Fig. 4.6 can be computed
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[Fread, 1975b]. Since the water surface slope is greater than the
channel bottom slope S, when the flow is increasing and less than S,
when the flow is decreasing, the loop rating is below the single value
rating on the rpising limb and above it on the recession limb. Actually,
if S¢ is determined from the Momentum Equation (4.2), terms other than
dh/3x are seen to affect Sg; however, these terms are usually small

in comparison, especially for typical flood routing problems and can

be safely neglected. The boundary condition for a loop rating curve

is given by the following expression:

3+ 3+1|1/2
-1 N

. 24 J+1
i+l AR'ﬁ) -0 (4.40)

Qg - 1.486[ ,
N N Axy

For additional information on loop rating curves, refer to [Fread,
1973c; 1975a]. ’

3. Weir type relation between stage and discharge. This type of
boundary condition can be used when the flow is controlled at the
downstream boundary by some type of weir or gated structure. The
boundary condition assumes the following form under this condition
of flow:

Q%+l - a(h§+l - hw)b =0 (4.41)

in which a and b are coefficients depending on the type of weir and
hw is the elevation of the weir crest.

When simulating in the forecasting mode, it is important that the
locations of the upstream boundary be such that the stages or discharges
specified as the known boundary condition are not affected by the flow
conditions downstream of this location. In either the forecasting or
reconstitution mode when a rating curve is used as the downstream
boundary, it is important that the location of the boundary be such
that the flow at that location is not affected by flow conditions
further downstream. Of course, there is always some minor influences
on the flow due to the presence of cross-section irregularities
downstream of a given location; however, these usually can be neglected
unless the cross-section irregularity is very pronounced such as to
cause significant backwater or drawdown effects. Reservoirs or major
tributaries below the downstream boundary which may produce backwater
effects on the rating curve at the downstream boundary location should
be avoided. When this situation is unavoidable, the reach of river
for which the Saint-Venant equations are being used to simulate the
flow should be extended on downstream to a point below where the
tributary enters or to the dam in the case of the reservoir. Of course,
the routing reach can also be shortened such that the downstream
boundary is shifted a sufficient distance upstream to a point where
backwater effects are always negligible.
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Solution of System of Difference Equations

Upon applying the difference Equations (4.22) and (4.23) to each of
the (N-1) grids shown in Fig. 4.4 and including an upstream boundary
equation and a‘downstream boundary equation, the following system of
non-linear equations (expressed in functional form) is obtained:

B.(,, Q) =0 o
171
0 \

[}

e o ecs s e esPessee s
"eeser oLVt ssOsEL

C; (hys Qg hyygs Q) =0

~ (4.42)
M, (hys Qs hypqs Qppq) =0
Ca(hy-1> Quoge M QP = O

=0

My (g Qpere By Q) T
By (B Q) =0 /

where the B function represents the boundary conditions and the C and
M functions represent respectively ‘thé Continuity Equation (4.22) and
the Momentum Equation (4.23) applied to each grid. Thus, if there are
N-1 grids and two boundaries, a total of 2N equations are included in
Equations (4.42). The terms within the parenthesis are the unknown
variables h and Q at time level j+1.

A generalized functional iterative method known as the Newton-
Raphson method [Isaacson, 1966] first used by Amein and Fang [1970],
can be used to obtain an efficient solution to the non-linear system.
The development of the Newton-Raphson method for a general system of
non-linear equations is described in Appendix B and is quite similar
" to the more commonly known Newton-Raphson method of solving a single
non-linear equation as described in Appendix A.

The system of 2N non-linear equations with 2N unknowns is solved by
applying the Newton-Raphson method. Computations’ are begun by assigning
trial values to the 2N unknowns. Substitution of the trial values
into the system of non-linear equations yields a set of 2N residuals.

A residual is the value of the right-hand side of the equation after
the trial value is substituted in Equations (4.42). Solutions to
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Equations (4.42) are obtained when the trial values converge to
the actual values. This is accomplished by adjusting the trial
values until each residual vanishes or is reduced to a tolerable
quantity. Convergence is also obtained when successive trial
values of the discharge and stage unknowns differ by less than

a quantity known as the convergence criterion, €. Actually, the
J+1
+ #1034

and the water surface elevations (hi s hi+l) have another convergence
criterion €. The Newton—-Raphson method provides the means for
correcting the trial values in a series of iteration steps until

the residuals are reduced to tolerable values.

4i )
discharges (Q s Qi+;) have one specified convergence criterion EQ

If only one iteration step is performed at each At time step, i.e.,
the first approximation is corrected only once, the non-linear
formulation of the finite difference approximation of the Saint—-Vanant
equations degenerates to the equivalent of a linear finite difference
formulation such as used by Chen and Simons [1975]. The use of only
_ one iteration (correction) is advantageous when the flow change is
small over the selected routing interval (At), where the time step
is selected by considerations of fixed data input or output intervals
such as used in forecasting. When the time step can be selected
independent of these considerations, the computational advantage of
a linear solution procedure is negated by increasing the time step
used in the non-linear solution beyond that needed in the linear
solution to produce a desired accuracy.

In order to illustrate the Newton-Raphson method, let it be assumed
that the computations have been carried through the k-th iteration
cycle so that values of the unknowns have been approximated through the
k-th cycle. It is desired to approximate the values of the 2N
unknowns through the (k+l)-th cycle. ‘Let the residuals be represented
by RB?, RC?, cee RC?, RM? cee RC§_1, ng—l’ RB§ in which RB, RC,
and RM are associated with the functions B, C, and M, respectively.
The values of the residuals at the k-th iteration cycle are:

B, (a5, @) = RB; \
c, &5, o BS, 05 = re}

o o ok -

c, (hI;, Q‘i, hli‘ﬂ, Qli‘ﬂ) = RC‘;

My @ Qs i Q) = R (449
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k k k _k
1 (Byp> Qg By Q) = ROy,
k k k ke _
M1 (hN—l’ Q-1° b QN) N RM;-I

Kk ky _ ook
By, (hy» Q) = RB

(4.43—con.)

The residuals and the partial derivatives of the system of Equations
(4.42) are related according to the Newton-Raphson algorithm, developed

in Appendix B, by the following:

3B aB
95y o8y k
o= dny dQ. = -RB
ah, aql 1 1
3¢C ac 3¢ 3¢C
1 1 1 1 k
—L gh. + —=% dq, + —— dh, + =—— dQ, = -RC
on, M1 78, T4 T Em, T2 T8, 2 1
oM oM oM aM
1 1 1 4 Xk
—L gh. +—L dQ, + =— dh, + = dqQ, = -Rb
ah, M1 T 3q, T T Em, T2 T, T2
ac, ac, g, ac y
L dn, +3o= dQ, +z=m— dh, dQ = -RC"
ah, 3Q; oh, aQ i+l i
3, 2, o, aM. N
So dhy + g doy + dh,, dq. -RM
ah, aql ah 1 . 8Qi+1 i1 - TRy
g a 3C,_ 3C
-1 Oy N 1 x
a dQ dhy + dqQ.. = -RC
Thy , ye1 ¥ e, 2t BhN N
Myl oy 4 ol d. .+ M1 4 aMN L g - nk
Bhy, N1 Qg CN-1 dny T Tag, ‘W -1
3B, 3B
N N ok
L an + o 4oy = -RBy

N-1

(4.44)

Equations (4.44) are a system of 2N linear equationms with 2N unknowns
[(dhl, dQ;) i=1,N]. Any standard method for solving a linear system

of equatlons such as Gaussian elimination or matrix inversion can be
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used for its solution. However, since the coefficient matrix denoted

as the Jacobian in Appendix B consisting of the partial derivative

terms of Equations (4.44) is a sparse-matrix with a band width of at

most four components along the main diagonal of the matrix, as illustrated
in Appendix C, a very efficient solution technique developed by

Fread [1971c] and described in Appendix C is used to minimize the
required computer computation time and storage.

The solution of Equations (4.44) will provide values of dhy and dQy.
Then, the values of the unknowns at the (k+1)-th iteration cycle are
obtained from the-following relationships:

k+1 _ .k
hi = hi + dhi (4.45)
k+1 _ k
Qi = Qi + in (4.46)

The procedure is applied as many times as desired until the difference
between values of any unknown in two consecutive iteration cycles is
less than the appropriate convergence criterion, €; or £Qe

The terms in Equations (4.44) consist of three categories. The first
is the unknowns [(dhj, in), i=1,N]. The second is the residuals,
which are noted to have a negative sign associated with them.

The residuals as indicated in Equations (4.43) are determined by

substituting the values of hi and Qi in Equations (4.42) and computing

the resultant numerical value. It is evident that the residual
associated with the boundary conditions given by Equations (4.33),
(4.34), (4.36), or (4.37) is zero, while the residual of Equations
(4.38)-(4.41) may be non-zero. The last category of terms is the
partial derivatives. These are evaluated for the Cj and My functions
according to the following expressions: -

ac, Ax; ‘ 541
%, | 2t B+ 303 (.47

—= = -8 | (4.48)

= (B + 130)3:+1 (4.49)

=0 . , (4.50)
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where B is the top width of the off-channel dead storage cross—sectional
areas
oM, 2513+ . s s )
i_ (BQ B =+l |_ _f e
am, - 9| ATJ. Toehy [1 o, 3t an,
i i i J
pi*t w ap } 3
i L+, =j+l —i+1 e
3 [hlﬂ By R Sp A TS AT T Ax,| (4.51)
i 1 1 L i 1
Ax ' j+1 ‘(3s s
oM i 8qQ +1 £ e
= - — + . .52
Q. {ZAt ] + 0 2{ A}. +oegh [BQ. Ax; +3q, By (4.52)
i 1 1 1
i+l . 3s. 3s
= |- [BQABZJ A R el R
1+l i+l * i+l i+1
j+i J
1) . . W.dB
i+l |, 3+1 jtl | =+ —3+1 £
e {hlﬂ hy T F S 7 Ak A5, T Axy 4 , dh Bl (4.53)
1 - 1 i+l
Ax j+1 . 3s a§
BBM = {Zﬁ\l + 0|2 —B% + gadtt an Ax, + ——aQ Ax, 1 (4.54)
Qyy |28y i/l T i+l i
in which:
8. _ |dn/dh, 5B, dB /dh
50— = 25, —= - — (4.55)
i i n, 6A 3B
- _ 1
S¢ _ dn/dhi 41 9By 9By +1/ dh, o
= 25, L + - (4.56)
i+1 i l n 6A 3B
8, _ [dn/dq
—a‘f— = 25, % .1 (4.57)
i i n, 2Q
1
3s dn/dQ,
an - 75, L, L (4.58)
i+1 i n 2Q
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- 2s B, V?

9S e, 1 i
e _ i Z
2 -
Bhi A (vi+l Vi)
35 25, By Vim
e i .
Z - 2
9hy iy Ay (Vigq - V%)
- 3% -2 Se‘ Vi
e S— 1 -
0Q; (Vi = Vi) A
39S 2 Se. Vi+l
e - 1
= 7
0, (ip ~V3) Ay

where:

and

dBi/dhi = ABi/Ahi

v, = Qi/Ai
Virr = G/t
— A
da/dn, = fw dh
AR dn,
1
)
~AQ dog
- ho+h
2
Aty
Q = BT
A
Gh!dhi =0
dﬁ/dhi =1/2
A
dd/aq; = o
A
dQ/dQi = 1/2

if i #m

if i

if 1

if i
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(4.69)

(4.70)

4.71)



Whereas the i and i+l subscripts in Equations (4.47)-(4.71) donote
each node location along the routing reach, the m and mt+l subscripts
donote the upstream and downstream node locations between which the
Manning @ relationship with stage or discharge is considered
constant with respect to distance along the routing reach.

The partial derivatives for the Bl and BN functions are evaluated
as follows:

BBl ) .

—aq = 1 y (4072)
9B

L= (4.73)
30,

when the upstream boundary is a stage hydrograph, Equation (4.33), or:

BBl

T = 0 (4.74)
1

9B

L= | (4.75)

BQl

when the upstream boundary is a discharge hydrograph, Equation (4.34), and:

3By

Ty " 1 (4.76)

3B

SBE =0 (4.77)
*N

when the downstream boundary is a stage hydrograph, Equation (4.36), or:

SBN

a_h‘__; = 0 (4‘78)
oB..

N (4.79)
aQ

4-24



when the downstream boundary is a discharge hydrograph, Equation (4.37), or:

9B (Qk 41 " Qk)

N -
SO N G-50)
9B

N
3y

when the downstrean boundary is a stage-discharge single value rating
curve, Equation (4.39), or:

B . ..11/2
jH1{, 3+ _ J+l\ _ .

i I [Asz -1~ 'y Zdn/dby | E[E]Jﬂ
on. | n 3{A

h'N | N AxN-—-l J nN N

_ 2 (aB/an)3*t _ 1 4.82)

3( B Jy 2T - Wity .
M1~ My 7

oB .
a_Q_N_ - 1 : (4.83)

N

when the downstream boundary is a spage—discharge loop rating curve,
Equation (4.40), or: :

N _ i+l _ b-1
ab(hN hW) (4.84)

—N_, (4.85)

when the downstream boundary is a weir type stage-discharge relationm,
Equation (4.41). ’

Relaxation Algorithm for System of Rivers

The implicit formulation of the Saint-Venant equations is well suited
for simulating unsteady flows in a system of rivers such as the one
shown in Fig. 4.7, since the response of the system as a whole is
determined for each time step. Also, because the implicit technique
is stable for large time steps, it can provide an efficient means of
obtaining the transient response of river systems subjected to floods
of several days' or even weeks' duratiom.
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Fig. 4.T.--Application of implicit solution technique to system of rivers.
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The following criteria should be considered in developing a technique
for applying the implicit method of dynamic routing to a river system:
(1) the continuous storage and dynamic interactions at the confluence
of the tributary and the principal (main stem) river must be properly
simulated; (2) an efficient matrix solution algorithm such as presented
in Appendix C must be used; and (3) the technique must be adaptable
to a river with several tributaries. An algorithm satisfying the
above criteria can be devised by applying the implicit technique to
one river at a time and the separate transient responses so cbtained are
coupled by conserving mass and momentum of flow in each river at the
confluence. A complete conservation is accomplished by treating the
tributary flow at the confluence as lateral flow q when the transient
response of the principal river is obtained. (Losses at the confluence
other than friction are not considered.) Since the tributary flow
depends in part on the water surface elevation at the confluence,
and vice versa, an iterative or relaxation procedure is necessary.

The application of the implicit technique of dynamic flood routing to
the river system shown in Fig. 4.7 is summarized by the following
algorithm [Fread, 1973c].

1. Specify the initial conditions and the upstream boundary condition
for the principal river and the tributary; specify the downstream boundary
condition for the principal river.

2. Estimate the tributary flow Qte occurring at the confluence for the
time t+At.

3. Solve the implicit difference Equations (4.22) and (4,23) for the
principal river by using a lateral inflow Qte/Axc along the finite reach
Ax. (the width of the tributary); the solution obtained for the water
surface elevation at the midpoint of Axc is denoted as hg.

4, Solve the implicit difference Eduations (4.22) and (4.23) for the
tributary by using h, as the downstream boundary condition; the solution
obtained for the tributary flow at the downstream boundary is denoted

as Qts'

5. If IQ eths! < €y @ predetermined error tolerance, increment the
time and reEurn to step 2; otherwise:

Qe = % Q¢ t a- 0‘c) Qe (4.86)

where o, is a weighting factor (0.5 £ o, < 1.0) and return to step 3.

The rate of convergence of the algorithm can be increased by using
parabolic extrapolation to obtaim Qg in step 2. The convergence
can be accelerated further by a proper selection of the weighting
factor a,. Usually, one to two iteratioms is required for convergence
when a reasonable value of the error tolerance €. is used.
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APPENDIX A
SOLUTION OF NON-LINEAR EQUATION BY NEWTON-RAPHSON ITERATION

A non—-linear' equation may be solved by a functional iterative
technique such as Newton-Raphson Iteration. Consider the following
equation expressed in functional form:

f(x) =0 (A.1)

Non-linearity arises when the equation contains the variable x raised
to any power other than unity. The solution of Equation (A.l) is
obtained iE an iterative manner, proceeding from a first solution
estimate x— towards succeeding improved estimates x l, which tend to
converge toward the solution denoted as X in Fig. A.1, The orderly
procedure by which the improved solution estimate x i is obtained so
that it converges to an acceptable solution is known as Newton-Raphson
Iteration [Conte, 1967; Fread, 1971b] and is described as follows.

A non-linear equation such as Equation (A.l) may be linearized b
using only the first two terms of its Taylor series expansion at x , i.e.,

£(x) = £(x5) + £165) (x - x5) (A.2)

where the prime (') denotes a derivative evaluated at xk, i.e.,

f'(x) = df(x)/dx. The right side of Equation (A.2) is the linear
function of xK that best approximates the non-linear function f(x)
which is evaluated at x*~. An iterative procedure, which will cause
f(xk) to approach zero as the quantity (x-xK) approcaches zero, can

be obtained from Equation (A.2) by setting f(x) equal to zero and
replacing x with Yk+l, which will be an improved solution estimate
for x if the iterative procedure is convergent. Hence, Equation (A.2)
takes the form:

Sk ey e (8 (A.3)

where the k superscript denotes the number of iteration.

Equation (A.3), the gﬁneral iteration algorithm of Newton, is repeated
until the difference (x - X ) is less than €., or until f(xk) is
less tban € When either occurs, the iteratiofl process has converged;
i.e., %K %as approached X to within the prescribed error tolerance

or €,. The case of convergence according to the 82 criterion is
1}lustrated in Fig. A.l.

The comvergence of the iteration process depends on a good first
solution estimate x<~1. If the estimate is sufficiently close to X,
convergence is attained; and it is at a quadratic rate, i.e., second
order, since the iterative procedure involves the first derivative.
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Fig. A.l.—-GCraphical illustration of convergence process of
Newton-Raphson iteration,
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The non~linear equations which are solved by the Newton-Raphson
iterative algorithm in this report are time dependent finite-difference
equations. A first estimate of the solution is obtained by using the
solution associated with the time t-At., Using this as the initial
estimate, the <dteration process will converge. The convergence process
can be hastened when the first solution estimate =L is made closer
to the acceptable solution. A simple linear extrapolation is used
to provide better first solution estimates. Thus:

k=1

R f cL(xj_l - xj—Z) (A.4)

where the j subscript denotes the solution at time t and j—1 denotes
the solution at time t-At, etc. The weighting factor o varies from
zero to unity. A value of 0.5 is usually a safe value which will
insure convergence within a few iterations.



PENDIX B
SOLUTION OF NON-LINEAR SYSTEM OF EQUATIONS BY NEWION-RAPHSON ITERATION

A system of non-linear algebraic equations may be solved simultaneously
by a functional iterative technique known as Newton—Raphson Iteration
[Isaacson and Keller, 1966]. Consider the following M—-dimensional
system of non-linear algebraic equations:

. iy 2
?l (xl, R xM) 0
fM (xl, Xy oa o0 e xM) =0
or in vector notation:
£ @) =0 | (3.2)

The superscript j denotes a pacticular system of equations. When the
algebraic non-linear equations emanate from finite difference approxi-
mations of time dependent partial differential equations, j denotes the
particular time level at which solutions to the differential equations
are sought.

The solution vec:tor?{l3 of Equation (B.l) is obtaiped in an iterative
manner, proceeding Qp a first solution estimate X towards succeeding
improved.estimates X =, which tend to converge toward the solution
g%$ior X-. The orderly procedure by which the improved solution estimate
X is obtained such that it converges toward X° is known as Newton-
Raphson Iteration and may be described as follows.

The non-linear system f(g) may be 1ine§§ized by using the first two
X

terms of its Taylor Series expansion at , 1.4,
. M .
&) =@+ 16 & - | (8.3)
i=1 :
where:
...\1(
fi(ik) _ (X)) (B.4)
BXi

Equation (B.3) may be expressed in a concise form as:
£@) = £ @) + @D MK (8.5)

where J' (ﬁk) is the Jacobian, a gpefficient matrix made up of the
partial derivatives evaluated at X , and AX is a correction term



defined as:

“"=“j_"’k
AX Xi Xi (B.6)

The right-hand side of Equation (B.5) is the linear vector function of
Ek that best approximates the non-linear function f(ﬁb, evaluated at fk.
An iterative procedure is dgsired which will cause the vector function
f(ﬁk) to approach zero as AX, the correction vector, approaches zero.
Therefore, the right-hand side of Equation (B.5) is used to construct
the general iteration algorithm, i.e.,

N :
I'®) X = ~£ &) (8.7)
N ,
In Equation (B.7), AX is Bgzldefined as the difference be;gﬁen an
improved solution vector X and the old solution vector X .

The right-hand side of Equation (B.7) is the negative of the Sﬁsidual
or error vector produced by using the solution estimate vector X . in
Equation (B.2). The Jacobian is known since it is evaluated as X .

The linear system of equations represented in vector form bydpquation
(B.7) may be solved for the unknown linear correction vector AX by a
suitable matrix solution technique. A variation of Gaussian elimination
was chosen as the most efficient matrix solution technique; it is
described in Appendix C.

The co;gﬁgiion vector is used to pbggin an improved solution vector

estimate X of the solution vector XJ; The process is repeated until

is less than € which is a suitable tolerance vqugil When this
ggcurs, the iteration process has converged, i.e., X has approached
X within the prescribed tolerance €. The convergence of the iteration
process depends on a good first solution vector estimate X~ —~. If the
estimate is sufficiently close to iﬂ, convergence is attained at a
quadratic rate since the iterative procedure is 'second order (involves
the first derivative).

When. applying the Newton~Raphson Iteration to non~linear finite
difference approximationsdéglthe Saint-Venant equations, the first
estimate solution vector X - can be chosen sufficiently close to
to allow copvergence. A reasonably accurate initial condition provides
the first X° ~, and linear or parabolic extrapolated first estimates
may be used thereafter., Linear extrapolations are obtained from the
following expression: '

= J— j 3 — 3
ORI R W Salie kR i (8.8)
At‘]—’l

where At? and Atd™! are the values of the time steps betyeen the time
levels corresponding to the solution vectors, X~ and X , respectively.



The weighting factor o varies from zero to unity. f the time steps are
constant, the following parabolic extrapolation algorithm yields
parabolic extrapolations for the first estimate solution vectors:

Wy @ oy | (8.9)

If the time steps are not constant, linear extrapolation is used for
all extrapolated first estimate vectors.



APPENDIX C
COMPACT GAUSSIAN ELIMINATION ALGORITHM FOR QUAD-DIAGONAL SYSTEMS

Consider the following system of linear algebraic equations in
vector notation:
J'X =R (c.1)
~
where J' is a coeff1c1ent matrix of M x M dimensions with known

components J! -X is a column vector with M unknown X, components,
and R is a col&mn vector with M specified R components.

The components of J' may be arranged in numerous patterns; however,
the structure shown below is characteristic of the Jacobian described
in Appendix B and generated by four—point finite difference approxima-
tions of the Saint-Venant equations.

A
T,1 71,2
1 1 ] \ ]
V9,17 2,27 2,37 2,4
\ A 1 4 4
T3,1973,2973,37 3,4
4 4 4 4
V4,37 4,67 4,57 406
] L 1
5,335,479 5,5 7 5.6
\.I' = e esses0soecsrrcccosn (C.Z)
LI I I R N I B N O ORI B B A I WY I BN BN Y
A | B ] 1
T 2,03 I M2, m-2 Y w2, m-1 T M2, m
1 ] 4 ?
T 1,03 w122 9 w101 3 M1,
) t t
| T T wm

The components of J' are banded about the main diagonal with, at most,
four components contained in any one row., A matrix structured in this
way lends itself to the development of an efficient solution algorithm.
The compact solution algorithm developed by Fread [1971c] and presented
herein is based on a modified Gaussian elimination method, which is
a well-known direct solution technique for a system of linear equations.

The compact algorithm differs from the general Gaussian elimination
method in that it requires substantially less computations and computer
core storage., The number of computations required by Gaussian elimination
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is of the order (M®> + M%)/2, while the compact algorithm requires 19 (M-1)
computations. The core storage required by the Gaussian method is

M x M words while that required by the compact algorithm is M x 4 words.
The number of computations is reduced by eliminating all computations
involving the many zero components in J'. The core storage is reduced
by transforming J' into a compact form J shown below.
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The arrangement of the components in J resulted from the J' components
being shifted horizontally such that the relative positions of the
components in any one row were not altered. The transformation is
accomplished by a simple change of the jth index of the J' . components,
Thus, after transforming J' into J, Equation (C.1) becomesd

JX =R ' : (C.4)
-
Equation (C.4) can be solved for the solution vector X by a compact
Gaussian elimination algorithm for quad-diagonal systems. The solution
algorithm consists of two parts. The first transforms the augmented
matrix J/R into an upper triaggular matrix by an elimination process.
The second part computes the X solution vector by a back—-substitution
process. The solution algorithm consisting of 23 steps follows:

1. Set k=0 and i = 2

2, F= —Ji,l/Ji_l’k+l (C.5)
3 50 T F g T , (c.6)
4. Ry = F'R;_; *Ry .7

c-2



5.0 F= T, (.8

6 Jig1,2 = F i1 T Ti,2 (C.9)
7. Ry, = PRy g+ R (C.10)
8. F =Ty o/, (C.11)
9o Jiw,3 7 i 3 Jia,3 (€.12)
10, Ji41 .4 ='F%Ji’4 + 31,4 (C.13)
1. Ry = FRg + Ry, (C.14)

12. Set k = 2

13. If i < (M=2) increment i by 2 and return to step 2; otherwise,
proceed to step l4.

l4. Set k =2 and i = M-1

15. F = —JM’3/Ji’3 (C.15)
16 3y, = Fy Lt Iy, (C.16)
17. R, = F*R; + Ry (€.17)
18. X, = RM/J'M,4 T , (C.18)
19 X = Ry =I5 400X (€.19)

20, If i = 1, stop; otherwise, decrease i by 1 and proceed to step 21.
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21. X, (C.20)

1 (Ri -J

i,6 %42 7 ¥1,3" %4740

22. Decrease i by 1

23. If i > 1, return to step 19; otherwise, set k = 0 and return
to step 19.

Steps 1-18 reduce the augmented matrix {LE to an upper triangular form.
Steps 19-23 perform the back-substitution by which the solution vector
X is cbtained.



