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INTRODUCTION

An essential step in the application of the unsteady flow equations to flood
routing and streamflow modeling activities is the determination of the roughness
parameter in the friction slope term of the momentum equation. The one-dimen-
sional equations of unsteady flow in anonprismatic channel consist of a continuity
equation and a momentum equation, i.e.
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and h(x,t) = water surface elevation; x,7 = space and time variables; 4 (x,h)
= active cross-sectional area of water; 4 ,(x, h) = inactive (off-channel storage)
cross-sectional area of water; Q(x,t) = discharge; ¢(x,t) = lateral inflow or
outflow per unit length of channel; v (x,?) = velocity of lateral inflow in direction
of channel flow; g = acceleration due to gravity; §, = friction slope; R =
hydraulic radius; n = Manning roughness coefﬁment and C = Chezy resistance
coefficient.

In modeling one- dxmenswnal unsteady flows, Eqgs. 1 and 2 are applied for
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the purpose of determining the unknowns, # and Q. as functions of x and
t. Of course, the solution is subject to boundary conditions at the upstream
and downstream extremities of the subcritical unsteady flow reach, lateral inflow
throughout the reach, and initial conditions of A and @ along the reach at ¢
= 0. Typical boundary and initial conditions are

QE)Y=0'(t) . . . 4
ho(E)=h"(1) . . e e (5)
R(x,0)=h_(X) . . . . e e e e e e (6)
Q(X,0) = Q,(X) + o oo 0]
g(x, 1) =q ' (X,8) . . . (8)
V(1) = vi(X, ) ®

in which Q' (¢), A’(¢), q'(x,t), and v_(x,r) are known functions of x and 7;
and h, and Q, are known functions of distance along the channel. In Egs.
1-3, g is a known constant, ¢ and v, are known functions of x and 7, while
A, A,, and R are measured properties of the channel cross-sectional geometry
and are therefore known functions of x and the unknown h. The remaining
parameter (n if the Manning equation is used to describe the friction slope,
S,, or C if the Chezy equation is used) is an empirical parameter that cannot
be measured directly. For convenience, the Manning representation of the friction
slope will be used throughout this paper without restricting the generality of
the method presented herein. In natural river channels, the Manning n is a
function of x and also a function of Q or A. When a numerical finite difference
technique is used to solve the unsteady flow equations, the value of n is also
a function of the particular schematization used to describe the continuous
channel geometry by a series of discrete representations along the reach of
channel being modeled.

The determination of n is the major task required in the calibration of
one-dimensional unsteady flow models. An obvious and presently used method
to determine # is by a trial-and-error technique in which the governing equations,
Egs. 1 and 2, are repeatedly solved by a finite difference technique for different
assumed functions of n(x, Q, or h). The particular functions that give the
closest agreement between the solutions of the governing equations (subject
to the particular boundary and initial conditions given by Eqgs. 4-9) and the
field observations are selected as the correct » function. Even when »n is assumed
to not vary with Q or h, the task can be extremely tedious, expensive, and
difficult, since the governing equations are nonlinear. Also, when the channel
reach is a part of a river system, the flow in a branch (tributary) can affect
the flow both upstream and downstream in the main-stem river as well as the
flow in other tributaries. This is particularly true of large rivers with major
tributaries. When the bottom slope is very mild [in the range of 2 ft/mile
(0.38 m/km) or less], an adjustment of n for one reach has repercussions
upstream and downstream on the main stem and its tributaries.

The purpose of this paper is to present a simple and very efficient technique
to determine the optimum » values as functions of x and 2 or Q when observed
values of water surface elevation (stage) and discharge are available from
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previously observed unsteady flow events. The optimum #» functions are deter-
mined such that the absolute value of the sum of the differences between the
observed and computed stages or discharges is minimized. The computed values
are determined from a finite difference solution of the unsteady flow equations,
Egs. 1 and 2, subject to the initial and boundary conditions of Egs. 4-9. Although
the technique is not restricted to the particular finite difference method used
to solve the unsteady flow equations, it was developed to be conveniently and
inexpensively used with implicit finite difference techniques applied to dendritic
(tree-type) river systems. It is equally applicable to explicit finite difference
solution techniques applied either to a single river or to a river system. The
technique is applied to an ideal channel, a main-stem river, and a natural dendritic
river system to demonstrate its accuracy and economy.

ReLaTiON TO PRevious ResearcH

The determination of parameters in a set of partial differential equations subject
to specified boundary and initial conditions is known in the literature as the
inverse problem. Much of the previous work in solving the inverse problem
for hydraulic systems has been concentrated in the solution of two-dimensional
unsteady ground-water equations for aquifers. Solution techniques for the aquifer
parameter identification problem have included: (1) Quasilinearization used by
Yeh and Tauxe (18,19), Marino and Yeh (14), and Lin and Yeh (13); (2) linear
programming used by Kleinecke (12); (3) multiple-objective linear programming
used by Neuman (15); (4) a Galerkin finite element approach for steady-state
input used by Frind and Pinder (9); and (5) Marquardt’s nonlinear estimation
algorithm used by Garay, Haines, and Das (10). For one-dimensional unsteady
open-channel flow models, parameter identification methods have included: (1)
The influence coefficient method used by Becker and Yeh (2,3) and Bennett
(4); (2) linear programming used by Yeh and Becker (17); and (3) the conjugate
gradient method used by Rao, Contractor, and Tiyamani (16).

The previous studies in parameter identification, both for aquifer and open-
channel models, have used the minimization of the root-mean-square error as
a criterion in determining optimal parameters. The technique presented in this
paper minimizes the bias (absolute value of the sum of the differences between
observed and computed stages or discharges) to determine the optimal value.
The bias was selected since it lent itself to a very simple mathematical technique
and has proven to eliminate most of the error of the root-mean-square. This
is demonstrated in the applications presented herein.

Much of the previous work in parameter identification has dealt with constant
parameter(s), whereas in this paper, a single parameter that varies with space
and with stage or discharge is treated.

The solution technique for the inverse problem presented in this paper begins
upstream and sequentially applies a simple gradient-type modified Newton-Raph-
son algorithm to each elementary reach of a multiple-reach river system of
dendritic configuration. The river system is decomposed such that mass and
momentum are conserved between the reaches. The observed stage and computed
discharge for the downstream boundary of the mth reach become the upstream
boundary for the (m + 1)st reach.

The concept of river system decomposition, associated with the parameter
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identification (calibration) technique presented in this paper, is related conceptu-
ally to an aquifer identification technique proposed in 1968 by Haines, Perrine,
and Wismer (11). With this exception, the decomposition method has not been
utilized; nevertheless, when applied to dendritic river systems, decomposition
offers a means of greatly simplifying an otherwise complex mathematical problem
and allowing the use of the simple optimization technique presented herein.
River system decomposition is in no way restricted to use only with the
Newton-Raphson solution technique. Other optimization techniques could be
used with the principle of decomposition.

THeORY

Basic Formulation.—Consider a reach of channel between two gaging stations
where stage h/, and discharge Q/ are measured at the upstream station and
stage hy only is measured at the downstream station as shown in Fig. 1. Egs.
I and 2, which describe the unsteady flow within the elementary reach, may
be solved by a weighted four-point nonlinear implicit finite difference technique
as described elsewhere by the first writer (6,7,8). This technique is similar to
that used by Amein and Fang (1), Contractor and Wiggert (5), and others.
The initial conditions of stages and discharges at all computational nodes along
the reach A-B must be specified as well as the boundary conditions at the
extremities of the reach. The upstream boundary condition is a known discharge
hydrograph, i.e.

Q.,=0,@) . e (10)
and the downstream boundary condition is known stage hydrograph, i.e.
hp=ho@) . . . o e (11)

Also, all lateral inflows or outflows denoted by Egs. 8 and 9 must be known.

By specifying the known discharge hydrograph at the upstream boundary,
any flow disturbances occurring upstream of the reach A-B that could affect
the flow within reach A-B are taken into account. Likewise, by specifying
the known stage at the downstream boundary, any disturbances occurring
downstream of reach A-B such as backwater from tributary inflow or tidal
effects that could influence the flow within reach A-B are effectively considered.

The n value is considered to be an integrated value throughout the reach
A-B, i.e., n is not considered to vary with distance between the two gaging
stations. However, n may vary with stage or discharge. In this paper, n will
vary only with discharge and this variation can be described as a continuous
piecewise linear function as shown in Fig. 2. The discharge is expressed as
an average discharge throughout reach A-B. The total range of possible discharges
is divided into a number (j = 1, 2, 3, ... J) of strata. Each stratum is associated
with an (n, Q) break-point in the n(Q) piece-wise linear function.

From inspection of Eq. 3 it is apparent that » is a function of both Q and
h; therefore, in order to determine a unique n(Q) function for reach A-B,
the discharge in the reach as well as the stage must be specified. The two
boundary conditions given by Egs. 10 and 11 provide the necessary combination
of Q and 4 to allow a unique determination of n.

Optimization Algorithm.—In order to determine the appropriate n(Q) function
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for reach A-B, a trial n(Q) function is selected and Egs. 1 and 2 are solved
subject to the specified boundary conditions, Egs. 10 and 11. An optimal n(Q)
function is sought which will minimize the absolute value of the sum of the
differences between the computed stages, h,, and the measured stages, h/,,
at the upstream boundary.

The overall objective function chosen for minimization is

2

1 & .
in which ¢,=—Jz RLo— R (13)

Joi=1

min &, =

in which M denotes the total number of stages associated with discharges within

—%— GAGING STATION AND COMPUTATIONAL NODE
—f— COMPUTATIONAL NODE

UPSTREAM DOWNSTREAM
BOUNDARY BOUNDARY
Q;—-—» ¥ $ + 4 3
[ER— h’
A FLOW 8

FIG. 1.—Schematic of Elementary Channel Reach A-B
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FIG. 2—Typical n(Q) Functional Relationship for Channel Reach A-B

the jth discharge stratum as shown in Fig. 2.

In order to determine the appropriate correction to each stratum of the n(Q)
function, it is desirable to work with an objective function for each stratum,
i.e., , as defined by Eq. 13. However, since

J

Z¢f sz 7 (14)

the overall objective function, ¢ ,, will be minimized by minimizing each ¢,.
The objective function for the jth stratum, ¢,, may also be expressed in
the following functional form:
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mind, {h, [n,(0)]}; j=12,..J . .. ... (15)

in which ¢, is a function of the computed and measured stages (h, and 1)
associated with discharges in the jth stratuin as indicated in Eq. 13. The stages
are also functions of the Manning n at the jth stratum, and the Manning n
is a function of the average discharge Q, within reach A-B.

An equivalent form of Eq. 15 is

b {h [n (O} =0 j=1,2,..J ... (16)

By expressing Egs. 13 or 15 in the form of Eq. 16, a gradient-type modified
Newton-Raphson algorithm can be applied to determine the improved n(Q)
functions so as to minimize ¢, . The modification of the Newton-Raphson algorithm
consists of the replacement of the continuous derivative with a finite difference
derivative. Thus, upon applying the modified Newton-Raphson algorithm to
Eq. 16, the following expression is obtained for determining the improved n,
trial value:

k k k—1

f*‘—_«nf—g—(—?’———i—’;l—)—; k=2 j=1,2,..J. ... ... ... . (17)

d)/ - (bJ
in which the kth superscript denotes the number of iterations. Eq. 17 can only
be applied for the second and successive iterations because of the kK — | terms
in the numerical derivative portion of Eq. 17. Therefore, the first iteration
is made using the following algorithm:

k

f“zn;‘w; k=1, j=1,2,...J .. .. ... ... ... (18)

[
in which a small percentage change in »n is made in the correct direction as
determined by the term (—d)f/ld)fl). The convergence properties of Eq. 17
are quadratic. Usually convergence is obtained within 3 < k = 5 iterations.
Convergence is obtained when either of the following inequalities is satisfied:

n

1 J
¢’;=72¢f<e .............................. (19)
dh = bNT 20)

in which € is a convergence criterion; an e of 0.001 ft (0.0003 m) has been
found to be a sufficiently small value.

The quality of the first trial (starting) values, n,l , for the n(Q) function influ-
ences the required number of iterations. If the starting values deviate from
the optimal values by too great a margin, Eq. 17 will not converge. This is
easily remedied by assuming new starting values and repeating the procedure.
Starting values may simply be judicious guesses or they may be estimated from
the following application of the Manning equation:

¢ 1/2
1.486 AR (uﬁ—)

X, = Xg

Mﬁ
n! =—L2 e L @1
Mj =1 (QA+q Ax)i

From the preceding theory, an optimization algorithm can be formulated for
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determining the optimal n(Q) function of an elementary reach; it consists of
the following steps:

Step 1. Initial values of the n(Q) function are made from Eq. 21 or are
simply estimated.

Step 2. Egs. | and 2 are solved by a finite difference technique subject
to the boundary conditions, Eqs. 10 and 11, and the specified initial conditions
and lateral inflows. The objective function, Eq. 12, is then determined for each
stratum of discharges in the n(Q) function using the computed and observed
stages at the upstream boundary.

Step 3. Improved values of the n(Q) function are obtained from Eq. 18
for the first iteration only and from Eq. 15 for the second and succeeding
iterations.

Step 4. The objective function is evaluated and compared to see if it is less
than a small specified e value. If it satisfies either inequality, Eqs. 19 or 20,
the optimal n(Q) function has been determined; otherwise, return to step 2.

Decomposition of River System.—A river system consisting of either multiple
reaches or multiple reaches and tributaries may be decomposed in such a way
that the preceding optimization algorithm for an elementary reach may be applied
reach-by-reach to the entire river system. The decomposition ‘of a river system
into elementary reaches for which optimal n values may be obtained reach-by-
reach greatly simplifies the optimization problem and allows the calibration
process to be accomplished in a most efficient manner.

First, consider the multiple-reach system shown in Fig. 3(a) with the gaging
stations at points A, B, C, and D. Discharge is observed at A and stages are
observed at A, B, C, and D. This multiple-reach system may be decomposed
into three elementary reaches as shown in Fig. 3(b). The upstream reach A-B
is treated first. Using the observed discharge, Q,. and the observed stage,
h,, as the upstream and downstream boundaries, respectively, the unsteady
flow equations are solved with a starting n (Q)function either assumed or estimated
from Eq. 21. The objective function that is to be minimized is the bias at
point A, i.e., &, = h, — h’,. Egs. 17 and 18 are used to obtain improved
values of n while simultaneously minimizing ¢ ,. As previously mentioned, any
flow affecting reach A-B is accounted for by the upstream boundary condition,
0 ., while anything occurring downstream of point B which might affect the
flow in A-B is taken into account by the downstream boundary condition of
the observed stage h,. Once the optimal n(Q) function is obtained for reach
A-B, the computed discharge, Q ,, is then used as the upstream boundary condition
for reach B-C. In this way, the optimization process can proceed reach-by-reach
in the downstream direction.

Next, consider the multiple-reach system with a tributary as shown in Fig.
4(a) with gaging stations at points A, B, C, and D. Discharge is observed
at the upstream points on each river, i.e., at points A and D. This river system
may be decomposed into three elementary reaches as shown in Fig. 4(b). First,
the tributary reach is treated. The discharge at D is used as the upstream boundary
condition for reach D-E. Since there is no gaging station at the confluence
E, the stage at E is interpolated from observed stages at B and C. By using
the interpolated stage, & ., as the downstream boundary condition, any backwater
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effects that the main-stem river has on the tributary are effectively considered.
The unsteady flow equations with a starting n(Q) function are then solved.
Improved n values are obtained from Egs. 17 and 18 so as to minimize the
bias at D. The computed discharge at E coincident with the optimal n(Q) function
obtained from Eq. 18 is saved for use as lateral inflow ¢ when optimizing
reach B-C. Next, the multiple reach system (A-B and B-C) is treated, starting
with the first upstream reach A-B. Then, when reach B-C is optimized, the
effect of the tributary on the main stem is effectively considered by introducing
as lateral inflow the tributary flow Q, over the small Ax reach containing the
confluence as shown in Fig. 4(b).

The decomposition principle can be used on a multiple-reach system with
any number of tributaries. However, it is limited to river systems of dendritic
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configuration. An interconnecting system of channels is not amenable to the
approach presented herein.

The basic formulation of the calibration procedure as described previously
requires both discharge and stage observations. The observed discharges are
required as an upstream boundary condition and the observed stages required
as a downstream boundary condition. The objective function for determining
the optimal n(Q) function is composed of both computed and observed stages
at the upstream boundary. For reasons of brevity, only this set of required
observationsis formulated herein; however, there are other possible combinations
of observations. Another combination that the writers have also provided for
in the computer coding of the calibration technique presented herein consists
of the following: (1) Observed stage hydrograph for upstream boundary condition;
(2) observed stage hydrograph for downstream boundary condition; and (3)
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observed discharge hydrograph at downstream boundary for the objective
function.

The writers have found that the first set of required observations (upstream
stages-discharges and downstream stages) is well suited for most applications
on large rivers where stage observations are much more plentiful than discharge
observations. Actually, when multiple reaches are treated, only observed stages
are required at all gaging points other than the most upstream station where
observed discharges also are required.

APPLICATIONS

Multiple-Reach Idealized Channel.—The essential features of the optimization
algorithm are illustrated by identifying the n(Q) functions for a multiple-reach
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FIG. 5.—(a) Plan and Profile of Multiple-Reach ldealized Channel; (b) Actual and
Calibrated n(Q) Functions for Ideal Channel

idealized channel. The channel is 60 miles (97 km) long with a trapezoidal cross
section having side slopes of 1:10 and a bottom width varying from 2,000 ft-52,000
ft (610 m-15,900 m) as shown in Fig. 5(a). The channel has a bed slope, §,,
which varies from 1.0 ft/mile (0.0001894) in the upstream reach to 0.1 ft/mile
(0.019 m/km) in the downstream reach as shown in Fig. 5(a). The 60-mile
(97-km) channel consists of three reaches, each bounded by gaging stations
located at channel miles 60, 30, 10, and 0 (97 km, 48 km, 16 km, and 0 km).
Lateral inflow is negligible and initial conditions are a steady flow of 20,000
cfs (560 m’/s) and constant depth of 5.0 ft (1.5 m). At the upstream boundary
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TABLE 1.—Comparison of Calibration Technique and DWOPER Forecast Program

Calibration Technique Forecast Program (DWOPER)
Root-mean- Root-mean-
square, in CPU time, square, in CPU time,
Application feet (meters) in seconds feet {meters) in seconds
(1 (2) (3) ~ (4) (5)
Ideal 0.057 12.2 e 7.4
(0.017)
Multiple reach 0.31 21.4 0.44 10.9
(0.095) (0.134)
Multiple-reach 0.62 20.2 0.67 12.4
dendritic system (0.189) (0.204)

TABLE 2.—Summary of Results from All Runs of Idealized Channel Problem

Root- Root-
mean- mean-
square, CPU square,
d o, in in time, b, in in
iter- feet feet in feet feet
Run Reach ation (meters) (meters) | seconds | (meters) | (meters)
(1) (2) (3) (4) (5) (6) (7) (8)
1 1 0 —0.581 0.757
(—=0.177) (0.231)
1 —0.548 0.721
(—0.167) (0.220)
2 -0.030 0.143
(-0.009) (0.044)
3 0.015 0.073
(0.005) (0.022)
2 0 0.683 1.444
(0.208) (0.440)
1 0.655 1.399 17.0 —0.021 0.153
(0.203) (0.427) (-0.006) (0.047)
2 -0.140 0.230
(—0.043) (0.070)
3 0.006 0.116
(0.002) (0.035)
3 0 —-1.244 1.390
(—0.379) (0.424)
1 —1.221 1.365
(—0.372) (0.416)
e 2 -0.213 0.331
(—0.065) (0.101)
3 0.083 0.271
(0.025) (0.083)
2 1 0 0.015 0.073
(0.005) (0.022)
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TABLE 2.—Continued

(1) (2) (3) (4) (5) (8) D) (8)
1 0.014 0.058
(0.004) (0.018)
2 ~0.007 0.047
(~0.002) (0.014)
2 0 0.038 0.085
(0.012) (0.026)
1 0.038 0.070 12.2 ~0.009 0.057
(0.012) 0.021) (=0.003) | (0.017)
2 ~0.075 0.134
(—0.023) (0.041)
3 —0.020 0.061
(—0.006) (0.019)
3 0 0.001 0.056
(0.000) (0.017)
3 1 0 0.495 0.668
(0.151) (0.204)
| 0.448 0:630
(0.137) (0.192)
2 ~0.006 0.108
(~—0.002) (0.033)
3 ~0.031 0.081
(—0.009) (0.025)
2 0 ~0.988 1.249
(—0.301) (0.381)
1 ~0.974 1.225 14.1 ~0.005 0.092
(~0.297) (0.374) (=0.002) | (0.028)
2 0.932 0.233
(0.284) (0.071)
3 0.010 0.114
(0.003) (0.035)
3 0 ~0.159 0.336
(~0.048) (0.102)
1 -0.147 0.313
(~0.045) (0.095)
2 0.006 0.080
(0.002) (0.024)

Note: Starting values of n(Q) for Run 1 are constant n values of 0.025 for each reach.
Starting values of n(Q) for Run 2 are smoothed n values from Run 1. Starting values
of n(Q) for Run 3 are constant n values of 0.032, 0.017, and 0.037.

the channel is subjected to a typical single-peaked discharge hydrograph that
has a peak flow of 100,000 cfs (2,800 m’/s) occurring at t = 31 hr and receding
to the initial steady flow rate at + = 81 hr. The downstream boundary is a
sinusoidal stage hydrograph of 5.0 ft (1.5 m) amplitude and 24-hr period.

The actual n(Q) functions for each of the three reaches are shown in Fig.
5(b). Stage observations at the gaging stations [channel miles 60, 30, and 20
(97 km, 48 km, and 32 km)] were simulated by obtaining a numerical solution
of Egs. 1 and 2 subject to the initial and boundary conditions, channel geometry,
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and n(Q) functions described previously. The four-point implicit method men-
tioned previously was used in the National Weather Service’s Operational
Dynamic Wave Forecast Program (DWOPER) to integrate the unsteady flow
equations using time steps of 1 hr and distance steps as indicated in Fig. 5(a).
The simulated stages and discharges serve as a set of true observations, i.e.,
the data are free of observer noise (any noise originating from the numerical
solutions is duplicated in the calibration procedure). Also, the geometrical
properties of the idealized channel are exactly identifiable, i.e., observational
and sampling errors are absent.

Next, the simulated stages at the gaging stations [channel miles 60, 30, and
20 (97 km, 48 km, and 32 km)] along with the discharge and stage boundary
conditions were used as input for the optimization algorithm to uncover the
actual n(Q) functions. In run No. I, constant n(Q) functions of 0.025 were
used as starting values for each of the three reaches. The optimization algorithm
consisting of the four steps previously outlined was applied sequentially to the
upstream, middle, and downstream reaches. The final ¢ , values for all discharge
strata were 0.015 ft (0.004 m), 0.006 ft (0.002 m), and —0.083 ft (—0.025 m)
for each of the three reaches. The final root-mean-square errors between the
observed and computed stages at the upstream station in each of the three
reaches were 0.073 ft (0.022 m), 0.116 ft (0.035 m), and 0.271 ft (0.083 m).
Three iterations were required for each reach. Computer time (IBM 360/195)
required by the optimization algorithm was 12.2 sec; this is approximately 1.6
times that required for simulating the observations using the National Weather
Service’s DWOPER forecast program as indicated in Table 1.

The optimal n(Q) function is dependent on the starting values. This is illustrated
by three separate runs made with different starting values as summarized in
Table 2. Run 2, in which starting values were obtained by smoothing the optimal
values from run 1, shows improved statistics, with the average rms error being
reduced 0.153 ft (0.047 m) in run 1 to a value of 0.057 ft (0.017 m). The optimal
n(Q) function obtained from run 2 is shown in Fig. 5(b) along with the actual
n(Q) function used to generate the observations. This illustrates the potential
ability of the calibration technique consisting of the optimization algorithm and
system decomposition principle to uncover the actual n(Q) functions. The
computed and observed stages at channel mile 10 (16 km) using the optimal
n(Q) function [miles 0-10 (0 km-16 km)] are shown in Fig. 6. The stage at
this gaging station is significantly affected by the sinusoidal stage fluctuation
at channel mile 0.

Mulitiple-Reach River.—Currently, the calibration technique is being used by
the National Weather Service to develop forecast procedures for a number
of major rivers throughout the nation. Included among these is the Mississippi
River commencing at Vicksburg and terminating 460 miles (741 km) downstream
at the Gulf of Mexico, as shown in Fig. 7. Along this reach, the low flow
depth varies from approx 25 ft (7.6 m) at some crossings to a maximum bend
depth of almost 200 ft (61 m). The width is variable with an average of about
1/2 mile (0.8 km). The bottom slope is variable. The upper 100 miles (160
km) has an average effective hydraulic slope of 0.320 ft/mile (0.061 m/km),
the middle 125 miles (201 km) has an average effective slope of 0.076 ft/mile
(0.014 m/km), and the lower 225 miles (362 km) has an average effective slope
of 0.002 ft/mile (0.0004 m/km). Discharge varies from approx 150,000 cfs—
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2,000,000 cfs (420 m*/s-56,000 m* /s). Approximately 25% of the flow is diverted
through the Old River Diversion structure into the Atchafalaya Floodway. The
diversion structures at Morganza and Bonnet Carre as shown in Fig. 7 operate
only during extremely large flood events. The 460-mile (740-km) reach consists

2 b
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FIG. 6.—Computed and Observed Stages for Mile 10 of Idealized Channel
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FIG. 7.—Schematic of Lower Mississippi Multiple-Reach System

of 12 multiple reaches, each bounded by gaging stations as shown in Fig. 7.
The calibration technique was applied to this multiple reach to determine

the n(Q) function for each reach for much of the 1973 flood. The duration

of the hydrograph was 91 days. Time steps of 24 hr and variable distance
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steps averaging about 10 miles (16 km) were used in the four-point implicit
solution step of the optimization algorithm. Starting values for the n(Q) functions
were obtained from Eq. 21. The 1973 flood input consisted of observed discharge
hydrographs at Vicksburg and at the three diversion structures that operated
during this extreme event, and the lateral inflow from the Big Black River.
Observed stage hydrographs at the 13 gaging stations shown in Fig. 7 were
also used as input. The average ¢, value for all 12 reaches was 0.001 ft (0.0003
m) and the average root-mean-square was 0.31 ft (0.095 m). A typical example
of the optimal computed and observed stage hydrograph is presented in Fig.
8(a) for the Baton Rouge gaging station. The final n(Q) function for the Baton
Rouge-Donaldsonville reach is shown in Fig. 8(b). The n values are within
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FIG. 9.—Schematic of Mississippi-Ohio-
Cumberland-Tennessee (MOCT) System

the range of values computed using steady-state techniques. The trend showing
n to decrease with increasing discharge is reasonable for this reach as it is
a large river having levees on both sides with a very small overbank area relative
to the channel flow-area.

Note that the root-mean-square value does not approach zero as closely in
this application as in the preceding example of the idealized channel even though
the &, value does vanish. The tendency for ¢, to approach zero more readily
than the root-mean-square value can be observed in the idealized problem although
there the deviation of the root-mean-square value from zero is insignificant.
The inability of the optimization algorithm to drive the root-mean-square value
to nearly zero as ¢, is reduced to essentially zero is considered to be due
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to the presence of noise (errors) in the observed stages, discharges, and
cross-sectional properties. Nonetheless, a root-mean-square value of 0.31 ft
(0.095 m) is considered to be quite within the limits of practical accuracy.

An average of three iterations was required for each reach, and the total
required computation time for all 12 reaches was 21.4 sec, as shown in Table
1. This compares with 10.9 sec required for reconstituting the observed stages
using the optimal n(Q) functions in the DWOPER program.

Multiple-Reach Dendritic River System.—The calibration technique has also
been used to determine the optimal n(Q) functions for the Mississippi-Ohio-Cum-
berland-Tennessee (MOCT) River system, shown in Fig. 9. This 393-mile (633-
km) river system consists of 15 multiple reaches bounded by the gaging stations
asshown in Fig. 9. The system is dendritic configuration with observed discharges
available at the upstream gaging stations on each of the four rivers (Shawneetown
on the Ohio, Barkley Dam on the Cumberland, Kentucky Dam on the Tennessee,
and Chester on the upper Mississippi). Stage observations are available at all
gaging stations. The main-stem river is considered for mathematical modeling
purposes to be the Ohio-lower Mississippi segment with the upper Mississippi,
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FIG. 10.—(a) Computed and Observed Stages for Cairo of MOCT System; (b) Optimal
n(Q) Function for Cairo-New Madrid Reach of MOCT System

Cumberland, Tennessee Rivers considered as tributaries. The bed slope is variable
with an average effective hydraulic slope of about 0.25 ft/mile (0.047 m /km)
to 0.50 ft/mile (0.095 m/km). Each branch of the river system is subject to
backwater effects due to flows in the other branches. Total discharge through
the system varies from approx 120,000 cfs-1,700,000 cfs (3,400 m®/s-47,600
m’/s).

As a final illustration, the calibration technique was applied to the MOCT
system for the 1970 flood event of 83 days duration. Time steps of 24 hr and
variable distance steps averaging approx 9 miles (15 km) were used in the implicit
four-point solution of Eqgs. 1 and 2. The river system was decomposed such
that the n(Q) function was optimized for each of the individual tributaries.
Then, the multiple-reach main stem from Shawneetown to Caruthersville was
optimized using the computed downstream discharges from the previously
optimized tributaries as lateral inflows. The average ¢, value for all 15 reaches
was 0.048 ft (0.015 m), and the average root-mean-square error was 0.62 ft
(0.20 m). A typical example of the optimal computed and observed stage



1042 JULY 1978 HY7

hydrograph is presented in Fig. 10(a) for the Cairo gaging station. The optimal
n(Q) function for the Cairo-New Madrid reach is shown in Fig. 10(b). An
average of three iterations was required for each reach and the total computation
time for all 15 reaches was 20.2 sec as shown in Table 1. The somewhat larger
root-mean-square value for the MOCT system as compared with the previous
Lower Mississippi application is considered to be due to the greater temporal
variation of the flows in the MOCT system. If n(Q) functions for each reach
were selected as the average n for the discharge range, i.e., n(Q) = constant,
the average root-mean-square error for all 15 reaches in a simulation run of
DWOPER was 1.32 ft (0.403 m). This compares with the value of 0.67 ft (0.20
m) if the calibrated n(Q) functions were used in a DWOPER run as shown
in Table 1. The substantial increase indicates the significance of the n(Q)
relationship.

SummaRry anD CoNCLUSIONS

A technique is presented for determining the optimal n(Q) function for a
reach of river bounded by gaging stations. The technique uses a gradient-type
modified Newton-Raphson algorithm to improve the initial trial n(Q) function
such that the difference between upstream observed and computed stages is
minimized. The computed stages are obtained from a four-point implicit finite
difference solution of the one-dimensional unsteady flow equations subject to
upstream and downstream boundary conditions of observed discharge and stage
hydrographs, respectively. The technique is not restricted to this particular finite
difference solution. The technique may be applied to a river system consisting
of multiple reaches or tributaries, or both, forming a dendritic configuration
by utilizing the principle of system decomposition. When river systems are
treated, discharge observations are required only at the upstream extremities
of the main stem and each tributary while stages are required at all gaging
stations. This requirement is well suited to large, flat rivers where backwater
complicates discharge observations.

The technique is simple in concept and very efficient computationally since
the optimization algorithm converges quadratically with usually only three or
four iterations required. An ideal channel system subjected to complex unsteady
flow hydraulics and Manning n-discharge functions is used to illustrate the
technique’s ability to uncover the actual #(Q) function when observational errors
are absent. The technique has been applied by the National Weather Service
to several natural river systems; partial summaries of two of such applications
were presented to illustrate the efficiency and ability of the calibration technique
to determine the optimal n(Q) functions for river systems having complicated
unsteady flow hydraulics and imperfect observations. The observed-computed
stage hydrograph root-mean-square error coincident with the optimal n(Q)
function ranges from 0.2 ft-0.7 ft (0.06 m-0.21 m). The required computation
time (IBM 360/195) is about 0.005 sec/Ax/At. Using the DWOPER forecast
program and optimal n(Q) functions from the calibration technique, the simulation
of a total river system produces average root-mean-square errors (see Table
1) that show little deterioration from the average of the root-mean-square values
of the decomposed elementary reaches as treated in the calibration technique.
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ABSTRACT: This paper presents a simple and efficient optimization technique for !
determining the continuous piecewise linear variation of the roughness parameter with !
discharge (or stage) for each reach of the river system bounded by gaging stations or !
major tributary confluences. The optimization technique is based on a modified !
Newton-Raphson gradient-type algorithm and the application of a decomposition !
principle that simplifies the treatment of complex river systems of dendritic (tree-type) !
configuration. The observed-computed stage hydrograph RMS errors coincident with i
the optimal roughness-discharge relationship range from essentially zero for ideal {
systems with no observational errors from 0.2 ft to 0.7 ft (0.06 to 0.21 m) for complex i
natural systems. The required computation time (IBM 360-195) is about 0.005 sec per i
time step per distance step when the optimization technique is coupled with a i
weighted four-point implicit finite difference approximation of the unsteady flow i
equations. i
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