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The prediction of transient flow in a river having a major tributary poses a challenging
problem for the streamflow forecaster. The interaction of storage and dynamic effects between
the two rivers can be simulated efficiently by a mathematical model consisting of the two
unsteady flow differential cquations and of known stage time, discharge time, or stage-
discharge relationships at the extremities of the rivers. Numerical solutions of discharge and
water surface elevation are obtained from the differential equations at specified time intervals
by an implicit finite difference technique. This produces successive systems of nonlinear
cquations that are efficiently solved by the Newton-Raphson iterative method in combina-
tion with an extrapolation procedure and a specialized direct method for solving a system
of lincar equations. The length of the specified time interval is not limited by computational
stability; however, accuracy constraints may limit its size. Some numerical results are pre-
sented to illustrate the interaction between a river and a tributary when they are subjected

to a flood wave of long duration.

The accuracy of predicted water surface ele-
vations for transient flows in major rivers and
estuaries 1s hecoming increasingly important.
A method of prediction referred to herein as
dynamie flood routing promises to be an im-
provement over existing operational methods,
particularly when the transient flow occurs in
a system of interconnected channels. Of interest
in this paper is a system consisting of a prin-
cipal river and its major tributaries in which
the transient flow in a particular branch of the
svstem may be a funetion of the flow in other
channel branches.

Dynamie flood routing, also called numerical
routing or unsteady flow simulation, is based
on the complete differential equations of un-
steady open channel flow. This approach was
pioncered by Isaacson et al. [1956] in their
study of the Ohio River and has since been
modified and applied by many investigators.
Some of the investigators have used an ex-
plicit technique for solving the unsteady flow
equations [e.g., Isaacson et al., 1956; Liggett
and Woolhiser. 1967 Garrison et al., 19697,
Also, an implicit method has heen used by some
[c.e.. Baltzer and Lai, 1968; Amein, 1968;
Amein and Fang, 1970; Gunaratnam and
Perkins, 1970], while others have used the
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method of characteristics [e.g., Amein, 1966;
Streeter and Wylie, 1967; Liggett, 1968;
Baltzer and Lai, 1968].

Most investigations were concerned with the
transient flow along a single channel. Tributary
channels, if they were considered at all, were
not treated as an integral part of the channel
system, although an elementary channel system,
composed of a principal channel and a single
tributary, was investigated by Isaacson et al.
[1956] and Pinkayan [1972] by the explicit
method and by Larson et al. [1971], who used
the method of characteristies,

Thix paper presents a theoretical investigation
of the application of an implieit technique for
solving the dynamic flood routing equations in
an elementary river system. For this appliea-
tion the implicit formulation promises the ad-
vantages of requiring less computer time but
providing greater aceuracy than the other solu-
tion techniques,

DIFFERENTIAL [CQUATIONS OF
UxsTEADY Frow

Unsteady or transient flow in rivers may he
simulated by two partial differential equations
expressing the conservation of mass and mo-
mentum of the flow. The equations are known
as the unsteady flow equations; they are also
ealled the St Venant equations or the shallow
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water equations. A derivation of the equations
may be found in several references [e.g., Stoker,
1957; Chow, 1959; Strelkoff, 1969]. It is as-
sumed in the derivation that the flow is homog-
enous in density (i.e., no stratification exists),
that the flow is one dimensional (i.e., the ve-
locity is constant and the water surface is hori-
zontal across any section perpendicular to the
river axis), and that hydrostatic pressure pre-
vails at all points in the flow. The axis of the
river is considered to be a straight line, and the
geometry of the flow sections is three dimen-
sional and time invariant; i.e., the river bed is
fixed, and no scouring or deposition is assumed
to occur. The friction coefficient for unsteady
flow is considered to be the same as that for
steady flow and hence can be approximated by
the Manning equation for uniform turbulent
flow.

The two unsteady flow equations, the equa-
tion of continuity (conservation of mass) and
the equation of motion (conservation of momen-
tum}), can be expressed in divergence form as

8(AV) | 94’

oz 5 —1=0 @

and

oh
+ gA(g; + Sr)

AV | 8(AV)
dx + at

+ W.B— qu, =0 (2)

respectively, in which

A’ = A+ 4, (3)
Sy = 2V | V|/(2.208R""?) (4)

W, = C, |V, coso.| V, cos o, (5)

The terms in the preceding equations are

defined as

z, distance along the channel axis, positive in
the downstream direction;
t, time;
A, cross-sectional area of flow;
A’,  total wetted cross-sectional area, given by (3);
Ay, cross-sectional area of overbank storage in
which the velocity of flow is assumed to be
negligible;
V', mean velocity of flow, positive in the down-
stream direction, equal to Q/A;
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Q, discharge across a section, positive in the
downstream direction;
h, water surface elevation;
B, flow channel width, equal to dA/dh;
g, lateral flow per unit length along the channel,
positive if it is inflow;
v,, velocity component of lateral flow in the
direction of flow;
g, acceleration due to gravity;
S;, resistance slope, given by (4);
n, Manning roughness coefficient;
R, hydraulic radius, approximately equal to 4/B
in wide channels;
W., resistance effect of wind at the surface of flow,
given by (5);
C,, coefficient of wind friction;
¢, acute angle between the wind direction and
the channel axis;
V., wind velocity, positive if it is opposing the
channel flow.

Equations 1 and 2 make up a system of two
nonlinear first-order first-degree partial differ-
ential equations of the hyperbolic type. They
have two independent variables z-and t and two
dependent variables & and V. The other terms
are either known functions of 2, ¢, A, and/or V,
or they are constants. No analytical solutions
to this system of equations are presently known.
They may be solved, however, by writing them
in finite difference form and using a digital
computer to perform the numerous eomputa-
tions required by this type of solution tech-
nique.

TmpriciT FINITE DIFFERENCE SOLUTION

Equations 1 and 2 may be approximated by
algebraic finite difference equations, and the
continuous z-t region in which the solutions of
h and V are desired can be represented by a
rectangular net of discrete points as shown in
Figure 1. The net points are determined by the
interseetion of straight lines drawn parallel to
the z and t axes. The lines parallel to the z axis
represent time lines; they have a spacing of
At that need not be constant. The lines parallel
to the t axis represent locations along the river
(z axis); they have a spacing of Az that also
need not be constant. Each point in the network
can be identified by a double subseript 7, j; the
first letter designates the x position, and the
second designates the time line.

Depending on the form of the finite difference
expression used to approximate the partial de-
rivatives, the resulting difference equations
may be solved either direetly if they are linear,
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as they are in an explicit method, or by an
iterative procedure if they are nonlinear, as
they are in an implicit method.

In the explicit formulation the solutions of %
and ¥ are obtained one at a time for each sth
point by progressing left to right along the jth
time line; the process is repeated for each time
line. A major disadvantage of this method is
the necessity for restrieting the size of the time
step in order to -achieve a stable computational
procedure, ie., one in which small numerical
errors do not increase in magnitude with sue-
ceeding computations. The restriction in At is
manifested by the following inequality, known
as the Courant stability criterion [Isaacson et
al., 1956; Stoker, 1957; Strelkoff, 1970; Guna-
ratnam and Perkins, 19707 :

At < Ax/[V + (gA/B)'") (6)

Frictional considerations may further limit the
maximum allowable value of At [Garrison et
al., 196%; Wylie, 1970; Gunaratnam and Per-
kins, 19707,

Wlhien the solutions are obtained by an im-
plicit formulation, the difference equations are
written for all points along a given time line and
solved simultaneously before proceeding to the
next time line. The system of algebraic differ-
ence equations is nonlinear, a characteristie
requiring the use of an iterative solution pro-
cedure. The implieit eomputational procedure
is stable for all At provided proper finite differ-
ences are used [Abbott and Ionescu, 1967].
However, accuracy requirements tend to limit
the size of the time step that may be used
[Fread, 1973]. For transients with durations of
the order of several days, acceptable accuracy
is obtained when large time steps are used in
the implicit method. This enables the implicit
method to be more efficient than the explicit
method from the standpoint of computation
time even though the implicit method is more
complicated than the explicit method.

In this paper a variation of the implicit
formulation, referred to in the literature as the
‘box’ scheme, is nged. The box scheme was pro-
posed by Thomas [1934] and by Isaacson et al.
[1956] and used by Amein and Fang [1970]
and Baltzer and Lai [1968]. From Figure 1
and ‘the definition of K as representing any
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Fig. 1. The z-t solution region.

function the spatial derivative is approximated
in the box scheme by

K /dz ~ 0.5

'(Ki+1,1' -+ Ki+1.f+1 - Ki.i - Ki.i+1)/Axi

(7

It was found by Baltzer and Lai [1972] that
using (7) caused the computed velocities to
exhibit an undesirable oscillatory characteristic;
this was not observed in this investigation.

The finite difference operator for the time
derivative is

K/t ~ 0.5

'(K{,i+1 + K1‘+1,7‘+1 - Ki,z’ - Ki+1,a‘)/Al‘i

(8)

In the implicit box scheme the nonderivative
terms A, S;, W., and B are approximated as
follows:

IK ~ 0.25

'(Kz’,,‘+1 + K1'+1,f+1 + K:‘,,‘ + KiH.i) (9)

The nonderivative terms ¢ and v, are prescribed
at the point i + %4 and are therefore approxi-
mated as follows:

K>~ 0.5(Kiyip 511+ Kivio.2) (10)

When the operators defined by (7), (8), (9),
and (10) are introduced into the two unsteady
flow -equations, the following implicit difference
equations are obtained:
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0-5[(A V)i+1,i+1 + (A V)i+1,1' - (A V)i,i+1 -
Ai+l.i,)/Atf - O'S(Qi+1/2,i+l + Qi+l/2.1‘) =0 (11)

4+ 0.5(4; ;o + A — A —
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(A V)i i1/ Az,

0‘5[(AV2)1'+1,1'+1 + (Atfz)iviﬁ‘l - (AVZ)f»I'*‘l - (Avﬂ)i,i]/Axi
+ 0-5[(AV)£,7'+1 + (AV)HI,I'—H - (A V)i.i - (AV)Hl,i]/Ati
+ 0.25¢(A: i+ Aii + A+ Ay

[0:5(hiss ivs + hivr i — hi o —

hi.i)/Axi + 0‘25(SI:‘,;+; + S5, + Sriee, i T Sfi+x,j)]

+ 0.25[(W.B): je1 + (W.B):; + (WeB)is1, i1 + (W.B)is1,5]

- 0-5{(qv:)i+1/2,5+1 + (qvx)iﬂ/z,f] =0

Equations 11 and 12 form a system of two
algebraic equations that are uonlinear with
respect to the four unknowns, ie., the values
of & and V- at the net points 7, j + 1 and ¢ + 1,
j + 1. The terms A, 4’, B, and S, are known
functions of A; §; is also a function of V, and
q, v., and W, are known functions of 2 and ¢t.
All terms that are functions of & and V at the
net points 7, jand 7 + 1,jorati 4+ 14,7 (eg,
the case of ¢ and v,) are known from either
the initial conditions or previous computations.

The initial conditions refer to the values of
h and V associated with each point along the x
axis for the time line j = 1. They are obtained
from a previous unsteady flow solution or from
a steady gradually varied flow computation
[Fread and Harbaugh, 1971]. In the Iatter
method, depths and velocities are computed for
each point along the z axis, the computation
commencing with a known or an assumed depth
and steady flow rate at the downstream bound-
ary and proceeding stepwise in an upstream
direction. The computations proceed upstream,
since all flows treated in this investigation are
suberitical.

Equations 11 and 12 eannot be solved direetly
for the unknowns, since there are two more
unknowns than available equations; however, a
solution may be obtained by considering all N
points along the x axis in a simultaneous man-
ner. In this way a total of 2(N — 1) equations
with 2N unknowns may be written by applying
(11) and (12) recursively to the N — 1 reec-
tangular ¢rids along the @ axis. Two additional
equations are required for the system of equa-
tions to be determinate. These equations are
available from the houndary conditions.

The boundary conditions consist of a-deserip-

(12)

tion of either water surface elevation % or dis-
charge AV as a function of time at the upstream
and downstream boundaries, ie., at stations
i = 1 and i = N, respectively. The downstream
boundary condition may also be a known rela-
tionship between water surface elevation and
discharge, e.g., an empirical rating function,
weir flow, and normal flow corrected for un-
steady effects.

With the inclusion of the two boundary con-
ditions a system of 2N nonlinear equations with
2N unknowns is formed. Owing to the nonlin-
earity of the system, it is necessary to tise an
iterative procedure to obtain a solution. A
functional iterative process, called the Newton-
Raphson iteration [Crandall, 1956; Amein and
Fang, 1970], was chosen, since convergence is
attained at a quadratie rate,

The number of required iterations, as well as
convergence to the correct solution, depends on
the closeness of a first estimate to the solution;
this is then improved with each iteration. By
extrapolation from past solutions the first esti-
mate of the unknown solution may be improved
so as to reduce the required number of itera-
tions. Parabolie extrapolation provides excellent
first-estimate solutions when the time step is
constant. For nonconstant time steps, linear
extrapolation is used.

The iteration process requires the simultane-
ous solution of 2N X 2N linear equations during
each iteration. Since the structure of the coeffi-
cient matrix of the linear system is banded; a
special linear systems solution algorithm [Fread,
19717 similar to Gaussian elimination was used
to effect a minimum required computer storage
and computational time. Compared to standard
Gaussian elimination- procedures; “the  solution
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algorithm reduces the required storage from 4N*
to 8V and the required number of computations
from 2(N* + 2N?) to 38N.

AvrcoriTeM For Impricit Dynamic Rourtineg
N River SysTEMs

The implicit formulation of the unsteady flow
equations is well suited for simulating the tran-
sient flows in river systems such as the one
shown in Figure 2, since the response of the
system as a whole is determined for each time
step. Also, because the implicit technique is
stable for large time steps, it can provide an
efficient means of obtamning the transient re-
sponse of river systems subjected to floods of
several days’ or even weeks’ duration.

The following ecriteria should be considered
in -developing a technique for applying the
implieit method of dynamie routing to a river
system: (1) the continuous storage and dynamic
interactions at the confluence of the tributary
and the principal river must be properly sim-
ulated; (2) efficient computational schemes
such as those presented in the previous section
must be used; and (3) the technique must be
adaptable to complicated river systems. An
algorithm satisfying the above criteria can be
devised if the implicit technique is applied to
one river at a time and the separate transient
responses so obtained are coupled by conserv-
ing mass and momentum of flow in each river
at the confluence. This conservation is accom-
plished by treating the tributary flow at the
confluence as lateral flow ¢ when the transient
response of the principal river is obtained.
(Losses at the confluence other than friction
are not considered herein.) Since the tributary
flow depends in part on the water surface ele-
vation at the confluence, and vice versa, an
iterative procedure is necessary. The application
of the implicit technique of dynamic flood
routing to the river system shown in Figure 2
is summarized by the following algorithm:

1. Specify the initial conditions and the
upstream boundary condition for the principal
river and the tributary; specify the downstream
~boundary condition for the principal river.

2. Estimate the tributary flow Q.. occurring
at the confluence for the time ¢ + At.

3. Solve the implicit difference equations
(31 and 12) for the principal river by using a
lateral inflow. Q,./Az; along the finite reach

Upstream .
Boundary —>1 '*!
i=2
AN e
Tributary
Upstream ¥ Principal
p—_ 7 0
Boundary™ ;= 12 } e \* ] River
Confluence
—A—
i=N-t
Downstream i=N
Boundary

Fig. 2. Schematization of an elementary river
system.

Az, (the width of the tributary); the solution
obtained for the water surface elevation at the
midpoint of Az, is denoted as h,.

4. Solve the implicit difference equations
(11 and 12) for the tributary by using A, as the
downstream boundary condition; the solution
obtained for the tributary flow at the down-
stream boundary is denoted as Q.-

5. If 1Q.. — Q.| < e, a predetermined
error tolerance, increment the time and return
to step 2; otherwise, use Q,, as an improved
estimate of the tributary flow Q. and return
to step 3.

The rate of convergence of the algorithm ecan
be increased by using parabolic extrapolation
to obtain Q.. in step 2. The convergence can be
accelerated further by using an average of Q,,
and Q,, in step 5 to determine the improved
estimate Q. A gradually decaying oscillation
about the true value of Q,, characterizes the
convergence.

The above algorithm may readily be extended
to a river having more than one tributary.

NUMERICAL RESULTS

The algorithm for implicit dynamic routing
in river systems is used to obtain the transient
response of the river system shown in Figure 2.
The unsteady flow in the system is caused by
a flood wave having a duration of 17 days that
enters the river system at the upstream bound-
ary of the principal river. The discharge is
assumed to remain essentially constant at the
upper extremity of the tributary for the dura-
tion of the flood.
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The river system has the following pertinent

hydraulic and geometric parameters. The initial

discharges are 5000 ft*/sec (cfs) in the tributary
and 48,200 cfs in the prineipal river (upstream
from ‘the confluence). Each river has a bottom
slope ‘of 0.5 ft/mi, a rectangular cross section of
constant width (500-foot width for the tribu-

tary and - 1000-foot width for the principal -

river), constant Manning n of 0.04, 21 finite
reaches (the number of reaches need'not be the
same in each river), and negligible wind effects
(1e., Va
being consldered is 100 miles in length and:is
intersected at its midpoint by a 52.5-mile-long
tributary.. The upstream houndary conditions
are specified discharge hydrographs having a

resolution of 12 hours. The downstream bound--

ary condition for the principal river is the stage-
discharge relation of normal flow corrected for
unsteady: effects.

The computed temporal variations of river
stages for selected locations in the river system
are presented in Figure 3.1t is apparent: from
the stage hydrographs that significant increases
occur in the stage all along the tributary, par-
ticularly in the lower reaches. The increase in
tributary: stage coincides .within a few hours
with the increase in stage -at the confluence

=~ 0). The reach of the principal river
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owing to the passage of the flood wave through
the principal river:

The computed discharge hydrographs for
selected stations along the tributary are pre-
sented in Figure 4. Curve 1 depicts a flow re-
versal oceurring in:the vicinity of the conflu-
ence; however, the flow  continues in a
downstream direction at all times for much of
the length of the tributary, as is indicated by
curves 2, 3, and 4. As a result the flow accumu-
lates in the downstream: part of the tributary,
this accumulation producing - the rise in the
river stages shown in Figure 3. The flow rever-
sal indicates that the tributary stores a. small
volume of the flood flow of the principal river,

The simulation is performed by using differ-
ent time steps ranging in magnitude from 0.125
hour (that required by an explicit solution and
denoted as Atg) to.a time step size equal to
the 12-hour resolution of ‘the inflow  hydro-
graphs.  Trunecation errors in. the mnumerical
computations due to the size of the time step
cause the simulated hydrographs to be some-
what different for each size of time step used.
These differerices are compared against ‘a stan-
dard hydrograph determined by using a time
step of At;. The comparison is measured by a
relative root-mean-square error S, and a rela-
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2- Confluence of Principal River and Tributary
3- Tributary - 20'mi upstream of Confiuence
4-Tributary 40 mi upstream of Confluence
5=Tributary. 50 mi "upstream of .Confluence
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Fig. 3. Stage hy drographs for selected stations along the pfincipal river and ‘tributary.
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Fig. 4. Discharge hydrographs for selected stations along the tributary.

tive error at the peak stage P,, defined as

. n' 172
S, = 100[2 (yi — y/)z/(n’yp’z)] (13)
im1
P¢ = 100(?/,, T yp,)/yp, (14)
where
n’, “number of hydrograph points being compared;
yi, -stage computed by using a particular At time
step; .
yi'y . standard y; computed by using a Al time
g step;
Yp, maximum value of y;;
%y, maximum value of y,’.

Comparisons of the computed stages for the
confluence and downstream boundary of the
principal river using different-size time steps

are presented in Table 1. The required compu-
tation time on a CDC 6600 computer is also
presented in Table ‘1 for different-size  time
steps. The trade off between required computa-
tion' time and solution accuracy as delineated
in the table is an ‘advantage afforded by the
implicit technique that is not: offered by the
other finite difference techniques.

The number of iterations required in the
Newton-Raphson procedure and in the algo-
rithm for river systems depends on. the time
step size and the predetermined convergence
criteria. Hence for the example treated herein
the following remarks are applicable for a time
step of 1 hour and convergence criteria that
vield computed stages of 0.01-foot significance
and computed discharges of 10-cfs significance.

TABLE 1. . Effect of Time Step Size on Computed Stages at the Confluence and Downstream Boundary
of the Principal River
Downstream
Computation Time per Confluence Boundary
Day of Transient Routed

At, hours At/Alg per Finite Reach, see 8., % P, 9 8., % P, 9%
0.125 1 0.993 0.000 0.000 0.000 0.000
0.5 4 0.297 0:001 —0.006 0.001 —-0.004
1.0 8 0.170 0.007 —0.020 - 0.007 —0.060

L 3.0 -.24 0.076 0.035 —0.060 0.033 —0.067
6.0 48 0.055 0.091 —0:149 0.092 —0.137
12:0 96 0.040 0.261 —0:424 0.293 —0.416
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Fig. 5. Comparison of Stoker’s explicit ‘solution with an implieit solution for the idealized
: Ohio-Mississippi junction.

‘In the Newton-Raphson iteration the use of
first-solution estimates obtained from parabolic
extrapolations of previous solutions reduces the
number of iterations from an average of three
to an average of two. In the iteration procedure
of the system algorithm the required number of
iterations is reduced: from an average of four
to an average of two by using parabolic extrapo-
lation to cbtain Q.. and using the average of
Q.. and Q,, in step 5 of the algorithm.

The implicit dynamic routing algorithm for
a river system is compared to Stoker’s [1957,
p. 495] explicit method of routing a flood
through an idealized junction of the Ohio and
Mississippi rivers. Stoker treated a hypotheti-
cal flood initiating ‘at a point in the Ohio 50
miles above the junction; the flood was pre-
seribed as a severe rise in depth at that point
from an initial steady depth of 20 feet to a final
steady depth of 40 feet within a 4-hour period.
Stoker used an explicit finite difference tech-
nique. At the junction he applied the continuity
equation and the kinematic condition that the
depths of each river be the same at the point of
confluence. Stoker’s explicit solution was limited
by (6) to a time step of 0.17 hour for.a distance
step of 5 miles.

A comparison of Stoker’s results with those
computed by the implicit algorithm using 1-
hour and 4-hour time steps is shown in Figure
5. The results obtained with the implicit method
using a I-hour time step agree within approxi-
mately 19 with Stoket’s results.

SuMmMARY AND CONCLUSIONS

An efficient: implicit solution technique is
applied to the unsteady flow equations to obtain
the transient response of a river or system of
rivers subjected ‘to long-duration flood waves.
The implicit method provided results that are
numerically stable for large time steps; how-
ever, truncation errors related to the time step
size’ reduce the aceuracy of the results slightly
as the magnitude of the time step increases.
Parabolic extrapolation and an efficient linear
systems algorithm are used to improve  the
computational efficiency of the implicit method.
The system algorithm developed herein allows
the implicit solution technique to be applied to
the unsteady flow equations for a river system
as a whole. Hence it is possible to simulate the
transient dynamic - interactions occurring be-
tween a principal river and its major tributaries
during flooding of the system or of a part of it.
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The prediction of transient flow in a river having a major tributary poses a challenging
problem for the streamflow forecaster. The interaction of storage and dynamic effects between
the two rivers can be simulated efficiently by a mathematical model consisting of the two
unsteady flow differential equations and of known stage time, discharge time, or stage-
discharge relationships at the extremities of the rivers. Numerical solutions of discharge and
water surface clevation are obtained from the differential equations at specified time intervals
by an implicit finite difference technique. This produces successive systems of nonlinear
equations that are efficiently solved by the Newton-Raphson iterative method in combina-
tion with an extrapolation procedure and a specialized direct method for solving a system
of linear equations. The length of the specified time interval is not limited by computational
stability; however, accuracy constraints may limit its size. Some numerical results are pre-
sented to illustrate the interaction between a river and a tributary when they are subjected
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to a flood wave of long duration.

The accuracy of predicted water surface ele-
vations for transient flows in major rivers and
estuaries is becoming increasingly important.
A method of prediction referred to herein as
dynamic flood routing promises to be an im-
provement over existing operational methods,
particularly when the transient flow oceurs in
a system of interconnected channels. Of interest
in this paper is a system consisting of a prin-
c¢ipal river and its major tributaries in which
the transient flow in a particular branch of the
svstem may be a funetion of the flow in other
channel hranches.

Dynamie flood routing, also called numerieal
routing or unsteady flow simulation, is based
on the complete differential equations of un-
steady open channel flow. This approach was
pionecred by Isaacson et al. [1956] m their
study of the Ohio River and has since been
modified and applied by many investigators.
Some of the investigators have used an ex-
plicit technique for solving the unsteady flow
equations [e.g., Isaacson et al., 1956; Liggett
and Woolhiser, 1967 Garrison et al., 19697,
Also, an implicit method has heen nsed by some
[ee., Baltzer and Lai, 1963; Amein, 1968;
Amein  and  Fang, 1970: Gunaratnam and
Perkins, 19707, while others have used the

Copyright © 1973 by the Anmierican Geophysical Union,

method of characteristies [e.g., Amein, 1966;
Streeter and Wylie, 1967; Liggett, 1968;
Baltzer and Lai, 1968].

Most investigations were concerned with the
transient flow along a single channel. Tributary
channels, if they were considered at all, were
not treated as an integral part of the channel
system, although an elementary channel system,
composed of a principal channel and a single
tributary, was investigated by Isaacson et al.
[1956] and Pinkayan [1972] by the explicit
method and by Larson et aol. [1971], who used
the method of charaeteristies,

This paper presents a theoretical mvestigation
of the application of an implicit technique for
solving the dynamie flood routing equations in
an clementary river svstem. For this applica-
tion the implicit formulation promises the ad-
vantages of requiring less computer time but
providing greater aceuracy than the other =olu-
tion techniques.

IIFFERENTIAL KQUATIONS OF
U~sTEADY FLow

Unsteady or transient flow in rivers may he
simulated by two partial differential equations
expressing the conservation of mass and mo-
mentum of the flow. The equations are known
as the unsteadv flow equations; they are also
ealled the St. Venant cquations or the shallow
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water equations. A derivation of the equations
may be found in several references [e.g., Stoker,
1957; Chow, 1959; Strelkoff, 1969]. It is as-
sumed in the derivation that the flow is homog-
enous in density (i.e, no stratification exists),
that the flow is one dimensional (i.e., the ve-
locity is constant and the water surface is hori-
zontal across any section- perpendicular to the
river axis), and that hydrostatic pressure pre-
vails at all points in the flow. The axis of the
river is considered to be a straight line, and the
geometry of the flow sections is three dimen-
sional and time invariant; i.e., the river bed is
fixed, and no seouring or deposition is assumed
to occur. The friction coefficient for unsteady
flow is considered to be the same as that for
steady flow and hence can be approximated by
the Manning equation for uniform turbulent
flow.

The two unsteady flow equations, the equa-
tion of continuity (conservation of mass) and
the equation of motion (conservation of momen-
tum), can be expressed in divergence form as

IAV) o4
a5 =0 (1)
and
WAV a(AV) (Q_lg )
ax T g Tedlgt S

+ W,.B— g, =0 (2)

respectively, in which

A" = A+ A, (3)
S, = 'V | V|/(2.208R*"*) (4)

W, = C,|V.coso,| V, cosg, (5)

The terms in the preceding equations are
defined as

z, distance along the channel axis, positive in
the downstream direction;
f, time;
A, cross-sectional area of flow;
A’y total wetted cross-sectional area, given by (3);
As, eross=sectional area of overbank storage in
which the velocity of flow is assumed to be
negligible;
¥, mean velocity of flow, positive in the down-
stream direction, equal to Q/A4;
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Q, discharge across a section, positive in the
downstream direction;
h, water surface elevation;
B, flow channel width, equal to d4 /dh;
q, lateral flow per unit length along the channel,
positive if it is inflow;
v,, velocity component of lateral flow in the
direction of flow;
g, acceleration due to gravity;
S;, resistance slope, given by (4);
n, Manning roughness coefficient;
R, hydraulic radius, approximately equal to 4/B
in wide channels;
resistance effect of wind at the surface of flow,
given by (5);
C,, coefficient of wind friction;
¢, acute angle between the wind direction and
the channel axis;
Ve, wind velocity, positive if it is opposing the
channel flow.

Equations 1 and 2 make up a system of two
nonlinear first-order first-degree partial differ-
ential equations of the hyperbolic type. They
have two independent variables z and ¢ and two
dependent variables & and V. The other terms
are either known funections of z, t, k, and/or V,
or they are constants. No analytical solutions
to this system of equations are presently known.
They may be solved, however, by writing them
in finite difference form and using a - digital
computer to perform the numerous computa-
tions required by this type of solution tech-
nique.

Impuicit FINITE DIFFERENCE SOLUTION

Equations 1 and 2 may be approximated by
algebraic finite difference equations, and the
continuous 2-t region in which the solutions of
h and V are desired can bhe represented by a
rectangular net of discrete points as shown in
Figure 1. The net points are determined by the
interseetion of straight lines drawn parallel to
the @ and t axes. The lines parallel to the z axis
represent time lines; they have a spacing of
At that need not be constant. The lines parallel
to the ¢ axis represent locations along the river
(z axis); they have a spacing of Az that also
need not be constant. Each point in the network
can be identified by a double subscript 7, j; the
first letter designates the a position, and the
second designates the time line.

Depending on the form of the finite difference
expression used to approximate the partial de-
rivatives, the resulting difference equations
may be solved either directly if they are linear,
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as they are in an explicit method, or by an
iterative procedure if- they are nonlinear, as
they are in an implicit method.

In the explicit formulation the solutions of &
and V are obtained one at a time for each ith
point by progressing left to right along the jth
time line; the process is repeated for each time
line. A major disadvantage of this method is
the necessity for restricting the size of the time
step in order to achieve a stable computational
procedure, i, one in which small numerical
errors do not increase in magnitude with sue-
ceeding computations. The restriction in At is
manifested by the following inequality, known
as the Courant stability criterion- [Isaacson et
al., 1956; Stoker, 1957 ; Strelkoff, 1970: Guna-
ratnam and Perkins, 19707 :

At < Az/[V + (gA/B)') (6)

Frictional considerations may further limit the
maximum allowable value of At [Garrison et
al., 1969; Wylie, 1970; Gunaratnam and Per-
kins, 19707.

When the solutions are obtained by an im-
plicit formulation, the difference equations are
written for all points along a given time line and
solved simultaneously before proceeding to the
next time line. The system of algebraic differ-
ence equations is nonlinear, a characteristic
requiring the use of an iterative solution pro-
cedure. The implicit computational procedure
is stable for all A¢ provided proper finite differ-
ences are used [Abbott and ITonescu, 1967].
However, accuracy requirements tend to limit
the size of the time step that may be used
[Fread, 1973]. For transients with durations of
the order of several days, acceptable accuracy
ix obtained when large time steps are used in
the implicit method. This enables the implieit
method to be more efficient than the explicit
method from the standpoint of computation
time even though the implicit method is more
complicated than the explicit method.

In this paper a variation of the implicit
formulation, referred to in the literature as the
‘box’ scheme, is uged. The box scheme was pro-
posed by Thomas [1934] and by Tsaacson et al.
[19561 and used by Amein and Fang [1970]
and Baltzer and Lei. [1968]. From Figure 1
and the definition: of K as representing any
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funetion the spatial derivative is approximated
in the box scheme by

OK/dz ~ 0.5
’(Kiﬂ,y‘ -+ Ki+1,1‘+1 - K{,f - Kf.i+1)/A33i
(7

It was found by Baltzer and Lai [1972] that
using (7) caused the computed velocities to
exhibit an undesirable oscillatory characteristic;
this was not observed in this investigation.

The finite difference operator for the time
derivative is

dK/dt ~ 0.5

'(Kx,i+1 + K{+l,j+l - Ki,i - KH]J)/Afi

(8)

In the implicit box scheme the nonderivative
terms A, §;, W,., and B are approximated as
follows:

0K ~ 0.25

'(Kf,in + Ki+1,7’+1 + Ki,; + K1’+1,;‘) (9)
The nonderivative terms q and v, are preseribed
at the point ¢ + 14 and are therefore approxi-
mated as follows:

K~ 0.5(K1'+1/2,,’+1 + KM—I/Z.)’) (10)

When the operators defined by (7), (8), (9),
and (10) are introduced into the two unsteady
flow equations, the following implicit difference
equations are obtained:
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0.5[(AV)icr o1 + (AV)iii; — (AV)i i — (AV), 1/ Az,

+ 0'5(Ai,i+1, -+ Ai+1,1‘+1’ —_ Ai'i/ —_
0'5[(A V2)i+1,i+1 -+ (A172)i,i+i —

Ai+1,i’)/Atj - 0-5(Qi+1/2.i+1 -+ QH-I/Q.:') =0 (11)
(A V2)m‘+1 - (4 Vg),«'i]/Axi

+ 0-5[(AV>1‘,:‘+1 + (A V)i+l,i%-1 - (AV)LJ '_ (AV)i*l,j]/Ati
4+ 0.259(A: o1+ A+ Avir e+ 4y

H05(hist jur T+ hivr ;s — Ry —

hi,i)/Axi + 0'25(Sfi,i+x + Sfi.i + Sfi+1.i+1 + Sis-u,:‘)]

+ 0.25[(W.B):, ;o1 + (W.B)i; + (W.B)is1,je1 + (WeB) it

— 0.5[(qv) iv1s2,i41 + (@) iv1s2.:] = 0

Equations 11 and 12 form a system of two
algebraic equations that are uonlinear with
respect to the four unknowns, ie., the values
of h and V at the net points ¢, j + 1 and ¢ + 1,
j -+ 1. The terms A4, A%, B, and S; are known
functions of %; S, is also a function of V, and
q; vy, and W, are known functions of x and ¢.
All terms that are functions of & and V at the
net points 4, jand ¢ 4+ 1,jor at i + 14, j (e.g,
the case of ¢ and »,) are known from either
the initial conditions or previous computations.

The initial conditions refer to the values of
h and V associated with each point along the z
axis for the time line j = 1. They are obtained
from a previous unsteady flow solution or from
a steady gradually varied flow computation
[Fread and Harbaugh, 1971]. In the latter
method, depths and velocities are computed for
each point along the z axis, the computation
commencing with a known or an assumed depth
and steady flow rate at the downstream bound-
ary and proceeding stepwise in an upstream
direction. The computations proceed upstream,
since all flows treated in this investigation are
suberitieal.

Equations 11 and 12 cannot be solved directly

for the unknowns, since there are two more
unknowns than available equations; however, a
solution may be obtained by considering all N
points along the @ axis in a simultaneous man-
ner. In this way a total of 2(N — 1) equations
with 2N unknowns may be written by applying
(11) and (12) recursively to the N — 1 ree-
tangular grids along the z axis. Two additional
equations are required for the system of equa-
tions ‘to ‘be determinate. These equations are
available from the boundary conditions.

The boundary conditions consist of a deserip-

(12)

tion of either water surface elevation % or dis-
charge AV as a function of time at the upstream
and downstream boundaries, ie., at stations
i = 1 and i = N, respectively. The downstream
boundary condition may also be a known rela-
tionship between water surface elevation and
discharge, e.g., an empirical rating function,
weir flow, and normal flow corrected for un-
steady effects.

With the inclusion of the two boundary con-
ditions a system of 2N nonlinear equations with
2N unknowns is formed. Owing to the nonlin-
earity of the system, it is necessary to use an
iterative procedure to obtain a solution. A
functional iterative process, called the Newton-
Raphson iteration [Crandall, 1956; Amein and
Fang, 1970], was chosen, since convergence is
attained at a quadratic rate.

The number of required iterations, as well as
convergence to the correct solution, depends on
the closeness of a first estimate to the solution;
this is then improved with each iteration. By
extrapolation from past solutions the first esti-
mate of the unknown solution may be improved
s0 as to reduce the required number of-itera-
tions. Parabolic extrapolation provides excellent
first-estimate solutions when the time step is
constant. For nonconstant time steps, linear
extrapolation is used.

The iteration process requires the simultane-
ous solution of 2N X 2N linear equations during
each iteration. Since the structure of the coeffi-
cient matrix of the linear system-is banded, a
special linear systems solution algorithm [Fread,
19717 similar to Gaussian elimination. was used
to effect a minimum required computer storage
and computational time. Compared to standard
Gaussian elimination procedures,; the solution
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algorithm reduces the required storage from 4N*
to 8N and the required number of computations
from 2(N* + 2N?) to 38N.

ArcoritHM For ImpLiciTt Dynamic Routing
IN RIVER SysTEMS

The implicit formulation of the unsteady flow
equations is well suited for simulating the tran-
sient flows in river systems such as the one
shown in Figure 2, since the response of the
system as a whole is determined for each time
step. Also, because the implicit technique is
stable for large time steps, it can provide an
efficient means of obtaining the transient re-
sponse of river systems subjected to floods of
several days’ or even weeks’ duration.

The following criteria should be considered
in developing a technique for applying the
implicit method of dynamic routing to a river
system: (1) the continuous storage and dynamic
interactions at the confluence of the tributary
and the principal river must be properly sim-
ulated; (2) efficient computational schemes
such as those presented in the previous section
must be used; and (3) the technique must be
adaptable to complicated river systems. An
algorithm satisfying the above criteria can be
devised if the implicit technique is applied to
one river at a time and the separate transient
responses so obtained are coupled by conserv-
ing mass and momentum of flow in each river
at the confluence. This conservation is accom-
plished by treating the tributary flow at the
confluence as lateral flow ¢ when the transient
response of the principal river is obtained.
(Losses at the confluence other than friction
are not considered herein.) Since the tributary
flow depends in part on the water surface ele-
vation at the confluence, and vice versa, an
iterative procedure is necessary. The application
of the implicit technique of dynamic flood
routing to the river system shown in Figure 2
is summarized by the following algorithm:

1. Specify the initial conditions and the
upstream boundary condition for the principal
river and the tributary; specify the downstream
boundary condition for the principal river.

2. Estimate the tributary flow Q,, occurring
at the confluence for the time t 4 At.

3.7 Belve the implicit difference " equations
(11 and 12) for the principal river by using a
lateral inflow Q../Az, along the finite rteach

Upstream .
Boundary —>1 *!
i=2
———AN A
4
Tributery
Upstream | ¥ Principal
Boundary™; - : ; ke River
Y =t i=2 [i=N-t 4
Confiuence
S
>
i=N-1
Downstream i=N —
Boundary

Fig. 2. Schematization of an elementary river
system.

Az, (the width of the tributary); the solution
obtained for the water surface elevation at the
midpoint of Az, is denoted as #,.

4. Solve the implicit difference equations
(11 and 12) for the tributary by using k. as the
downstream boundatry condition; the solution
obtained for the tributary flow at the down-
stream boundary is denoted as Q..

5. If Q. — Qu] < e, a predetermined
error tolerance, increment the time and return
to step 2; otherwise, use Q,, as an improved
estimate of the tributary flow Q,, and return
to step 3.

The rate of convergence of the algorithm can
be increased by using parabolic extrapolation
to obtain Q,. in step 2. The convergence can be
accelerated further by using an average of Q,,
and Q.. in step 5 to determine the improved
estimate (... A gradually decaying oscillation
about the true value of Q,. characterizes the
convergence.

The above algorithm may readily be extended
to a river having more than one tributary.

NumEeRrIcAL RESULTS

The algorithm for implicit dynamic routing
in river systems is used to obtain the transient
response of the river system shown in Figure 2.
The unsteady flow in the system is caused by
a flood wave having a duration of 17 days that
enters the river system at the upstream bound-
ary of the principal river. The discharge is
assumed to remain essentially constant at ‘the
upper extremity of ‘the tributary for the dura-
tion of the flood.
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The river system has the following pertinent
hydraulic and geometrie parameters. The initial
discharges are 5000 ft*/sec (cfs).in the tributary
and 48,200 cfs in the principal river (upstream
from the confluence): Each river has a bottom

slope of 0.5 ft/mi, a rectangular cross section of
constant width (500-foot width for the tribu- -

tary- and- 1000-foot width- for the principal
river), constant Manning :n of 0.04, 21 finite
reaches (the number of reaches need not be the
same in each river), and negligible wind effects

(ie., Vi =~ 0). The reach of the principal river -

being considered is. 100 miles in length :and is
intersected at its midpoint by a 52.5-mile-long
tributary. The upstream boundary conditions
are specified. discharge hydrographs having a
resolution of 12 hours. The downstream bound-
ary condition for the principal river is the stage-
discharge relation of normal flow corrected: for
unsteady effects:

The computed temporal variations of river
stages for selected locations in the river system
are presented in Figure 3.:It is apparent from
the stage hydrographs that significant increases
oceur in the stage all along the tributary, par-
ticularly in the lower reaches. The increase in
tributary stage coincides within a few hours
with the increase in stage at the confluence

owing to the passage of the flood wave through
the principal river.

The computed discharge hydrographs- for
selected stations along the tributary are pre-
sented in Figure 4. Curve 1 depicts a flow re-
versal occurring in the vicinity of the conflu=
ence; - however, the flow continues in a
downstream direction at all times for much of
the length of the tributary, as is indicated by
curves 2, 3, and 4, As a result the flow accumu-
lates in the downstream part of the tributary,
this - accumulation: producing the rise in- the
river stages shown in Figure 3. The flow rever-
sal indicates that the tributary stores a small
volume of the flood flow of the principal river.

The simulation is performed by using differ-
ent time steps ranging in magnitude from 0.125
hour (that required by an explicit solution-and
denoted as At;) to a time step size equal to
the “12-hour resolution of ~the ‘inflow hydro-
graphs. Truncation errors in the: numerical
computations:due to the size of the time step
cause the simulated hydrographs to be some-.
what different for each size of time step used.
These differences are compared against a stan-
dard hydrograph determined by using a time
step of Atz The comparison is measured by a
relative root-mean-square error S, and a Trela-

34 T | T T
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TTTT1

20 O T 0 A I |

1~ Principal River, 50 mi
upstream of Confluence

2- Confluence of Principal River and Tributary
3~ Tributary ‘20 mi upstream of Confluence
4-Tributary ‘40 mi upstream of Confluence
5-Tributary. 50 mi . upstream of  Confluence

STAGE (FEET)

R 50 14 0

10 |- —
5 | 1 | | | | | ! i
0 1 2 3 4 5 6 7 8 10
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Tig. 3. Stage hydrographs for selected stations along the principal river and tributary.
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Fig. 4. Discharge hydrographs for selected stations along the tributary:.

tive error at the peak stage P,, defined as

n’ 1/2
2 2
8, = 100[2 (i — y)/('y )] (13)
i=1
Pe = 100(@/9 N ybl)/yp, (14)
where
n}, number of hydrograph points being compared;
Vi, stage computed by using a particular At time
step;
y:’, standard y, computed by using a Aly time
step;
Yy maximum value of y;;
¥y, -maximum value of y,’.

Comparisons of the computed stages for the
confluence and downstream boundary of the
principal river using different-size time steps

are presented in Table 1. The required compu-
tation time on a CDC 6600 computer is also
presented in Table 1 for different-size time
steps. The trade off between required computa-
tion time. ‘and’ solution accuracy asdelineated
in the table is an advantage afforded by the
implicit technique that is- not offered by the
other finite difference techniques,

The number of iterations required in the
Newton-Raphson procedure and in the algo-
rithm for river systems depends on the time
step size and the predetermined convergence
criteria. Hence for the example treated herein
the following remarks are applicable for a time
step of 1 hour and convergence criteria that
vield computed stages of 0.01-foot significance
and computed discharges of 10-cfs significance.

TABLE 1. Effect of Time St,ep Size on Computed Stages at the Confluence and Downstream Boundary
: of the Principal River
: Downstream
Computation Time per Confluence Boundary

: Day of Transient Routed

A, hours At/ Aty per Finite Reach, sec Se, % P, % S., % P,, 9%
0.125 1 0.993 0.000 0.000 0.000 0.000
0.5 4 0.297 0.001 ~ —0:.006 0.001 —-0.004
1.0 8 0.170 0.007 —0.020- 0.007 ~0.060
3.0 24 0.076 0.035 —0.060 0.033 —=0.067
6.0 48 0.055 0.091 —0.149 0:092 . —0:137

120 96 0.040 0.261 —0.424 0.293 —0.416
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Fig: 5. Comparison of Stoker’s explicit solution with an implicit solutlon for the idealized
Ohio-Mississippi junetion.

In the Newton-Raphson iteration the use of
first-solution estimates obtained from parabolic
extrapolations of previous solutions reduces the
number of iterations from an average of three
to an average of two. In the iteration procedure
of the system algorithm the required number of
iterations is reduced from an average of four
to an average of two by using parabolic extrapo-
lation to obtain Q.. and using the average of
Q.. and Q., in step 5 of the algorithm.

The implicit- dynamic routing algorithm for
a river system is compared to Stoker’s [1957,
p. 495] explicit method of routing a flood
through an idealized junction of the Ohio and
Mississippi rivers. Stoker treated a hypotheti-
cal flood initiating at a point in the Ohio 50
miles above the junction; the flood was pre-
seribed as a severe rise in depth at that point
from an initial steady depth of 20 feet to a final
steady depth of 40 feet within a 4-hour period.
Stoker used an explicit finite difference tech-
nique. At the junction he applied the continuity
equation and the kinematic condition that the
depths of each river be the same at the point of
confluence. Stoker’s explicit solution was limited
by (6) to a time step of 0.17 hour for a distance
step of 5 miles.

A comparison  of Stoker’s results with those
computed by ‘the implicit algorithm using 1-
hour and: 4-hour time steps is shown in Figure
5. The results obtained with the implicit method
using ‘a 1-hour time step agree within approxi-
mately 19 with Stoker’s results.

SuMMARY AND CONCLUSIONS :

An efficient implicit solution technique is
applied to the unsteady flow equations to obtain
the - transient response -of -a river or system:of
rivers subjected to long-duration flood waves.
The implicit method provided results that are
numerically stable for large time steps; how-
ever, truncation errors related to the time step
size reduce the accuracy of the results slightly
as the magnitude of the time step increases.
Parabolic extrapolation and an efficient linear
systems algorithm are used to improve the
computational efficiency of the implicit method.
The system algorithm developed herein allows
the implicit solution technique to be applied to
the unsteady flow equations for a river system
as a whole. Hence it is possible to simulate the
transient dynamic interactions occurring be-
tween a principal river and its major tributaries
during flooding of the system or of a part of it.
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