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WATER RESOURCES BULLETIN
VOL. 9, NO. 2 AMERICAN WATER RESOURCES ASSOCIATION APRIL 1973

EFFECTS OF TIME STEP SIZE IN IMPLICIT DYNAMIC ROUTING'

D. L. Fread*

ABSTRACT. The effects of the size of the /At time step used in the integration of the implicit
difference equations of unsteady open-channel flow are determined for numerous typical hydrographs
with durations in the order of days or even weeks. Truncation errors related to the size of the /At time
step cause a numerical distortion (dispersion and attenuation) of the computed transient. The
magnitude of the distortion is related directly to the size of the time step, the length of channel reach,
and the channel resistance and inversely to the time of rise of the hydrograph. The type of finite
difference expression which replaces spatial derivatives and . non-derivative terms in the partial
differential equations of unsteady flow has an important influence on the magnitude of the numerical
distortion, as well as the numerical'stability of the implicit difference equations. Time step sizes in the
range of 3 to 6 hrs generally tend to minimize the combination of required computation time and
numerical distortion of transients having a time of rise of the order of several days.

KEY TERMS: open-channel flow, unsteady flow equations, finite differences, implicit method,
truncation errors)

INTRODUCTION

Unsteady or transient flow in open channels such as rivers, canals, reservoirs, etc., may be
simulated by a mathematical model based on the complete one-dimensional unsteady flow
equations which conserve the mass and the momentum of the flow. Analytical solutions to
these nonlinear partial differential equations do not exist. However, they may be solved by
numerical techniques which use algebraic finite difference equations to approximate the partial
differential equations. It is essential to utilize a digital computer to perform the numerous
computations required by this solution technique.

Numerous finite difference techniques for numerically integrating the unsteady flow
equations have been reported in the literature. They may be categorized into the following four
methods of solution:

1. Implicit method [Abbott and Ionescu, 1967; Lai, 1967; Baltzer and Lai, 1968; Amein,
1968; Dronkers, 1969; Amein and Fang, 1970; Strelkoff, 1970; Kamphuis, 1970;
Gunaratnam and Perkins, 1970; Contractor and Wiggert, 1971; Fread, 1972] ;

2. Explicit method [Isaacson, Stoker and Troesch, 1956; Stoker, 1957; Liggett and
Woolhiser, 1967; Dronkers, 1969; Garrison, Granju and Price, 1969; Strelkoff, 1970;
Strelkoff and Terzidis, 1970} ;

! Paper No. 73020 of the Water Resources Bulletin, Discussions are open until November 1, 1973,
2 Research Hydrologist, Office of Hydrology, National Weather Service, NOAA, Silver Spring, Md. 20910
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3. Characteristic method with curvilinear net [Lister, 1960; Amein, 1966; Streeter and
Wylie, 1967; Liggett and Woolhiser, 1967; Wylie, 1969; Fread and Harbaugh, 1972] ; and

4. Characteristic method with rectangular net [Lister, 1960; Streeter and Wylie, 1967,
Baltzer and Lai, 1968; Mozayeny and Song, 1969; Wylie, 1970; Yevjevich and Barnes,
1970].

Of the four methods, the implicit method appears fo be best suited for modeling transient
flows with durations in the order of days or weeks such as the natural floods occurring in large
river systems. The implicit method, unlike the other methods, theoretically does not restrict the
size of time step because of the numerical stability characteristics of the finite difference
equations. Large time steps can enable the implicit method to be more computationally
efficient than the other methods, particularly for long duration transients.

The aim of this paper is to investigate the effect of large time steps on the accuracy of
solutions obtained from the unsteady flow equations by the implicit finite difference technique
for transient flows of durations in the order of days and weeks.

UNSTEADY FLOW EQUATIONS

The unsteady flow equations, the equation of continuity (conservation of mass) and the
equation of motion (conservation of momentum), can be respectively expressed in the
divergence form as:

94, 2(AV) -g=0 €))
or 0x

AV  a(AV?) 3k

ot T ox ted (g * P -ax=0 &)

in which the resistance slope, S, is given by the Manning equation, i.e.,
P f y q

Sp=n? | V| V221 (A4 3)
P

i}

The terms in the above equations are defined as: x = longitudinal distance along the channel,
positive in the downstream direction; ¢ = time; 4 = cross-sectional area of flow; V' = mean
velocity of flow across a section, positive in the downstream direction; h = water surface
elevation; ¢ = known lateral inflow or outflow per unit length along the channel, positive if
inflow; v, = velocity of lateral flow in the direction of the channel flow; S,= resistance slope;
n = Manning roughness coefficient; P = wetted perimeter of the flow cross section; and g =
acceleration of gravity.

A derivation of the equations may be found in several references, e.g., Stoker [1957], Chow
[1959] and Strelkoff [1969]. It is assumed in the derivation that the flow is one-dimensional
in the sense that flow characteristics such as depth and velocity are considered to vary only in
the longitudinal x-direction of the channel. It is further assumed that: 1) the velocity is
constant and the water surface is horizontal across any section perpendicular to the longitudinal
axis; 2) the flow is gradually varied with hydrostatic pressure prevailing at all points in the flow
such that the vertical acceleration of water particles may be neglected; 3) the longitudinal axis
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of the channel can be approximated by a straight line; 4) the bottom slope of the channel is
small; 5) the bed of the channel is fixed, i.e., no scouring or deposition is assumed to occur; 6)
the resistance coefficient for steady uniform turbulent flow is considered applicable, and an
empirical resistance equation such as the Manning equation describes the resistance effects; and
7) the flow is incompressible and homogeneous in density.

Equation 1 and 2 make up a system of two nonlinear, first order, first degree partial
differential equations of the hyperbolic type. They have x and r as independent variables and &
and V as dependent variables. The other terms are constants or are functions of independent
andfor dependent variables, ic., 4 (x, k), Sf (x, h, V), q (x,t)v ¥ (x,t),n(x, h)and P(x, h).

In order to obtain solutions to the unsteady flow equations, it is necessary to specify
boundary and initial conditions. Boundary conditions are conditions specified at fixed values of
x for various time. These values include discharge or water surface elevation versus time, or a
stage-discharge relation for the upstream and downstream extremities of the channel reach.
Initial conditions are conditions specified at fixed values of time at various spatial locations. An
initial flow profile for the channel reach may be determined from a backwater computation
[Fread and Harbaugh, 1971] and used as an initial condition. Besides boundary and initial
conditions, lateral flows, channel geometry and resistance coefficients must be prescribed a
priori.

IMPLICIT FINITE DIFFERENCE SOLUTION

Equations 1 and 2 may be approximated by algebraic finite difference equations; and the
continuous x-¢ region in which solutions of 4 and V are desired can be represented by a
rectangular net of discrete points. The net points are defined by the intersection of straight
lines drawn parallel to the axes of the x-f region. Lines parallel to the x-axis are time lines and
have a spacing of At which need not be constant. Lines parallel to the t-axis represent locations
along the channel and have a spacing of Ax which need not be constant. Each discrete point
may be identified by a double subscript (7, j/; the first designates the x-position and the second
designates the time line.

In the implicit finite difference solution, the time derivatives are approximated by a forward
difference quotient centered between the % and i + J points, i.e.,

0K Kijr 17 Kieg jup Kij-Kiv g (4)
ar 281,

where K represents any function or variable. The spatial derivatives are approximated by a
forward difference quotient positioned between two adjacent time lines according to weighting
factors of 6 annd (1-8), i.e.,

iﬁ ~ 6(Kiv‘l,]”f!'Ki,]'+1) + (10 Kiv1; K 5
Jx ()
Axi Axi

Functions other than derivatives are approximated by using weighting factors similar to
Equation 5. Thus,
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K ~0Kjop *Kipgjer)  + (10K ;4K g )

(6)

2 2

Upon substituting the finite difference operators defined by Equations 4, 5, and 6 into the
unsteady flow Equations 1 and 2, the following implicit difference equations are obtained:

Ajjrtivn i+ AL OIAY) g e AV e

2A fj Ax i
7

+(10)((AV) 141, AV i1 1,5 -q; y =0
Axi

2
(AV)i,j+]+(AV}i+1,j+]‘(AV)i,]"(AV}H'I,]' L 0/[Aav )i+1,j+l'(AV2)i,j+1

246 4 Ax;

s s
P8A e Al P per Mger 0 Tyt e e r) (0,

2 Ax; 2
(AV2). . ~(AVZ). ., glA, +A., 1 ) (h:yp; :-h, .
+(19)[ i+1,j ij +84 T+, i+1,] 7] +
Axi 2 Axi
S S
fi: i f‘l+1nj) - (qvx)l I,/:O (8)

2

A weighting factor of 8 = 1 yields the fully implicit scheme used by Baltzer and Lai [1968].
A weighting factor of § = 1/2 produces the “box” scheme used by Amein [1968], Amein and
Fang [1970], and Contractor and Wiggert [1971].

Equations 7 and 8 form a system of two algebraic equations which are nonlinear with
respect to the unknowns, the values of & and V at the net points (i, j + /) and (i + 1,7 + 1). The
terms 4 and S, are known functions of 4 and/or V. The terms associated with the net points (i,
j)and (i + 1, jJare known from either the initial conditions or previous computations.

The two equations cannot be solved for the unknowns since there are two more unknowns
than equations; however, by considering all N number of points along the x-axis simultan-
eously, a solution may be obtained. In this way, a total of (2N - 2) equations with 2V
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unknowns may be formulated by applying Equations 7 and 8 recursively to the (N - 1)
rectangular grids along the x-axis. The boundary conditions at the upstream and downstream
extremities of the channel reach provide two additional equations which are necessary for the
system of equations to be sufficiently proposed to yield a solution. The resulting system of 2N
nonlinear equations with 2V unknowns must be solved by an iterative procedure. A functional
iterative process, called Newton-Raphson Iteration [Crandall, 1956; Amein and Fang, 1970] , is
used to solve the nonlinear system. The iterative process converges to a solution of acceptable
accuracy at a quadratic rate; this may be improved by using parabolic extrapolation to obtain
the first approximation of the solution from solutions determined at previous times. The
coefficient matrix of the linearized system of equations has a banded structure which lends
itself to very efficient solution aigorithms, e.g., [Fread, 1970] .

STABILITY OF THE IMPLICIT EQUATIONS

The solution of a system of finite difference equations requires that numerical errors of
round-off, introduced in the computational procedure, not be amplified into an unlimited
error. The stability of the nonlinear difference Equations 7 and 8 can be investigated by a
Fourier analysis of the error propagation properties of linearized forms of the difference
equations. This stability analysis, known as the von Neumann method [O’Brien, Hyman, and
Kaplan, 1951] has been used by various investigators, e.g. Abbott and Ionescu [1967] and
Leendertse [1967], to show that, in general, an implicit finite difference formulation of the
unsteady flow equations is unconditionally stable for any ratio of A x/ A t when the 6
weighting factor is restricted to the range, 1/2 <6 < 1. Thus, according to this stability
analysis, the stability of the implicit method does not depend on the ratio, Ax/ At, as do the
explicit and characteristic methods. However, the inability to include in the stability analysis
the nonlinearities of Equations 7 and 8, as well as the effects of boundary conditions, causes
the von Neumann technique to be heurisitic and somewhat inconclusive. Under certain
conditions, the implicit difference equations have been observed to exhibit instabilities [Liggett
and Woolhiser, 1967; Baltzer and Lai, 1972] . In this investigation, numerical instabilities were
encountered for certain upstream boundary hydrographs and A ¢ time steps; this will be
discussed later

ACCURACY OF THE IMPLICIT EQUATIONS

Solutions obtained from the implicit difference Equations 7 and 8 have been mathematically
shown to converge to the true solutions of the partial differential Equations 1 and 2 as A x and
At approach zero [Abbott and Tonescu, 1967 and Leendertse, 1967] . Thus, if channel length
and the irregularity of channel geometry are used to select A x, the accuracy of the implicit
difference solution decreases as the size of the time step increases.

Truncation errors, related to the magnitude of the time step, arise during the integration of
the implicit difference equations. The truncation errors distort the solution via numerical
dispersion and attenuation of the computed transient. Henceforth, the truncation error in the
solution will be referred to as “numerical distortion.” Also, as will be shown later, the
characteristics of the discharge hydrograph at the upstream extremity of the channel reach have
a significant effect on the accuracy of the solution.

The characteristics of the numerical distortion are investigated herein via numerical
experiments in which Equations 7 and 8 are applied to upstream boundary transients described
by the following four-parameter, Pearson Type III distribution:
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Q1) = Q11 +(p-1) (L) (71—_7%1’(1'5;’/ ©)
in which

P=Qpax 19, (10)

V=TT (11)

The terms in the above equations are defined as follows: Q (t) = discharge at any time (), Qo =
initial steady discharge as computed by the Manning equation, Q 0y = Maximum discharge at
the upstream boundary during the transient flow condition, 7 = time of occurrence of Q@ .,
Tg = time associated with the center of gravity of the upstream hydrograph, p = hydrograph
amplification coefficient, and v = a skewness coefficient of the upstream hydrograph.

The downstream boundary condition is specified by the following implicit stage-velocity
relationship which is corrected for transient effects:

=148 ( 4235, 112 (12)
nop

in which

3(AV)  d(AVZ) . O )/ g

Sf=(qvx
ot dx 0x

(13)

This boundary condition allows the transient to pass the downstream extremity of the channel
reach with no numerical reflection.

The primary objective of this investigation is to study the effect of the size of the time step
on the solutions of the implicit difference equations. Therefore, selected parameters describing
the physical characteristics of the channel reach are held constant throughout the study except
in special instances where a single parameter is perturbed in order to determine its effect on the
results. The selected channel parameters are as follows: channel reach length (L) = 100 miles;
channel bottom slope (S,) = 1/5280 ft per ft; Manning roughness coefficient () = 0.03; wide
rectangular cross-section with surface width (B) = 2000 ft: number (V) of A x sub-reaches = 10,
and intial depth of flow (Y ) =5 ft. Convergence criteria for # and V in the iterative solution
were chosen as: | & k17, k | <1 x 1070 and | yk+1. Vkl <Ix 1070, where the
superscript k denotes the number of iterations.

The effect of the magnitude of the time step on the accuracy of the computed solutions is
determined by systematically increasing the time step from A .. 2 relatively small value in the
order of minutes, to a relatively large value of 12 hours. The A #,, time step is the maximum size
time step that can be used in an explicit method; it is computed from the Courant condition
[Stoker, 1957; Strelkoff, 1970] which insures numerical stability when friction effects are
relatively small:

Aty < Ax;/[| V;| +(gaB); V2] . (minimum fori=1. . . N) (14)

The stage hydrographs obtained using A7, in Equations 7 and 8 are considered the standards
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to which the solutions computed with A ¢ time steps of 1, 3, 6 and 12 hours are compared.

This follows the approach used by Abbott and Ionescu [1967] for testing the effect of the
magnitude of At in direct finite difference approximations of the unsteady flow equations. The
fact that the truncation error is a minimum when the time step isA ¢, follows from a Taylor
series analysis of Equations 7 and 8, as well as from the fact that as A r increases beyond A L,
the response properties of the computational system depart from those of the physical system.

Deviations from the standard hydrographs are measured by the following relative root mean
square error {Se) and relative error of the peak {Pe) of the hydrographs:

.= >
s = 10005 2 (v-vs)?) 12
¢ (15)
nj/zysp

Py=100 (1y,/ys,) (16)

in which n = total number of hydrograph values being compared, ;= stage value computed
with a particular A ¢ time step, ys; = stage value computed with a A I, time step,yp = maximum
(peak) value of ¥;, and ys - = maximum value of ys;.

Figures 1 and 2 illustrate typical numerical distortions of the computed dyrographs at the
downstream boundary for two variations in the upstream boundary condition. In Figure 1, the
time of rise (7) is 48 hours, while in Figure 2, 7 is 120 hours. The hydrographs obtained with a
time step of 12 hours differ from those computed with a time step of 0.5 hour. The rising limb

of the former occurs earlier than the latter, while the falling imb is delayed and the peak is

T T T T T T T T T T T
0:=1.00, 6=0.65, atx0.5hr p=20
- 0=1.00, At=|2 hrs Y =12

- = §=20.85, at={2hrs

T=48hrs

29. Downstream Boundary -

Ups?tream Boundary

24, —

STAGE (FT)

1 | I
60 T2 84 96 108 120 132 144
TIME ( HRS)

Figure 1. Distortion of computed downstream stage hydrograph
for large At steps when 0 is varied and 7 = 48 hours.
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35.
T=120 hrs N

30. -

Upstream Boundary
25. -
20. -

1"=l44 hrs
15.

T I T I I
e=1., ©20.55, a{=0.5hr
6=0.55, ot=12hrs
- 0=],, at=i2hrs

=20

1 | | | i

o
(o] 24 48 T2 96 20 144 |68 192 216 240 264 288
TIME (HRS)
Figure 2. Distortion of computed downstream stage hydrograph
for large At steps when 0 is varied and 7= 120 hours.
8. r T T T 8. T T T ” T
--- 831.00 e —--9:1.00 /7
—— §=0.55 P 8=0.55 / T=48hrs
7 -
6. - 1 6. - 4
P /
b3 /’/ S / /
$
t 4. 1 E: 4. / 7]
P g /
B /
2. F / b 2. r ,/ ]
T=48hrs //
L e —
R T ; 11
| At \
st at (hrs) ¢
_2 i i i
T T T ¥ . 1 | 1
- —-9121.00 l 3 6 12
—— 01088 at (hrs)
6. |- - 6. T T T
-——0:=1.00
_ 0=0.55 T=120 hrs
24 T=120hrs - 4 -
> >
0 L J
2. - o e ] a2, - -
- ~ - -~ ” - ”
- M :___*__,.’/ - -
0. bF—t ! t 0. Yt==— t -4
“T | 3 6 12 1 ﬂ 3 6 12
< ale
at(hrs) at (hs)

Figure 3. Effect of 6 and T on the distortion of the computed stage
hydrograph at the downstream boundary for various
At time steps having p = 20 and y=1.2.
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attenuated. The distortion is more pronounced in Figure 1 than in Figure 2 for the same values
of At and 8. Also, for a single 7 value, the distortion is significantly greater for 6 =1 than for ¢
=0.55.

A quantitiative evaluation of the numerical distortion, in terms of S, and P, is shown in
Figure 3. The influence of 6 and 7 on the degree of distortion is significant. This was also
observed for other test hydrographs. Thus, it may be concluded that the lower range of
allowable @ values minimizes the distortion (dispersion and attenuation) which results from the
use of large time steps in the integration of the implicit difference equations. Also, the degree
of distortion becomes less as the time of rise of the input hydrograph increases. Several
correlations of S, with the size of the A ¢ time step are shown in Figure 4. The correlations are
given for varlous 7 and p values of the upstream boundary hydrograph. The S, error is
associated with the stage hydrographs computed at the downstream boundary of the 100 mile
channel reach described previously.

An examination of Figure 4 yields the following information concerning the numerical
distortion resulting from the use of At time steps considerably larger than those determined
from the Courant Condition (Equation 14):

1) The magnitude of S, increases with the size of the A 7 time step;

2) As 7, the time of rise of the upstream hydrograph increases, the slopes of the (S,, A t)

curves decrease;

3) The magnitude of S, is less than 1% for 7 > 96 hours and At <12 hours.

The solid curves in Flgure 4 are applicable for a 8 of 0.55, a value chosen so as to minimize
numerical distortion while conservatively insuring theoretical stability of the computations. The

Se (%)

8. 8 ¥ T T T
P =10

6. 6. |- 1
—~ - 0 4”15
P & -—0‘1/ ’
£ a. ~ 4, F 1342 “
: &
[ .‘\ﬁ

2, 2.

0. 0.

at, ate

< at (hrs)

at{hrs)

Figure 4. Correlation of S, error (for the stage at the downstream boundary)
with the At time step for various upstream boundary hydrographs having ¥ = 1.2,
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dashed portion of the curves are applicable to 6 values greater than 0.55 which are required for
numerical stability since lesser values of § cause instabilities to arise in the iterative solution of
the nonlinear difference equations. The selected 6 values are optimal in that the magnitude of
numerical distortion is minimized while numerical stability is achieved. The optimal 8 values
vary with A ¢ and 7. An illustration of the variation with A7 and 7 is given in Figure 5 for a p of
20. By inspecting Figures 4 and 5, it can be seen that the tendency for stable numerical
computations decreases with increasing values of A ¢ and with decreasing values of  and 7.

T T T T i

NOTE: Stable region .
is above and to the STABLE

right of at lines. d

REGION

OPTIMAL © -
2tE12 hrs
e at€ 6 hrs .
——-=-bA1% I hrs

B

UNSTABLE
ah
: REGION
.3 &\ AN \ N N\
(o] 12 24 36 48 60 72 84

T (hrs)

Figure 5. Optimal 0 for numerical stability and minimum distortion
for various 7, At,and p = 20, y=1.2.

The effect of the At time step size on the attenuation of the computed stage hydrographs at
the downstream boundary is presented in Figure 6 for various combinations for 7 and p. In
Figure 6, P, is negligible for 7 values greater than 48 hours; however, P, can be significant for A
t > 3 hour when 7 <48 hours.

The results presented thus far are applicable for the constant channel parameters selected
previously. In order to determine if the numerical distortion resulting from large time steps is
sensitive to the values of the channel parameters, these are perturbed and the resulting effects
on S, and P, are observed. The observed effects may be summarized by the following
approximation:

(S e Py) >~ (S, P,) (17)

in which the prime superscript denotes the magnitude of § e or P, associated with any channel
parameter (') having a different value than the constant value of the corresponding
parameter (¥) for which Figures 4 and 6 are applicable. The correction factor 7, is presented in
Figure 7 for the various channel parameters in terms of the ratio, ¢ 7 . It can be observed
from Figure 7 that the numerical distortion increases when either the channel length, L, or the
Manning roughness factor, n, increase; and decreases when either the magnitude of the initial
depth of flow, Y , or the channel bottom slope, SO, increase. The channel width, B, was
observed to have little or no effect on the magnitude of the numerical distortion. The
magnitude of the numerical distortion increases with the distance from the upstream boundary
to the channel location in question.
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Figure 6. Correlation of Pg error (for the stage at the downstream boundary) with
the At time step for various upstream boundary hydrographs having 7y = 1.2.
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o 1
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Figure 7. Correction factor, 1, for determining the effect of
various channel parameters on the numerical distortion (S, Pg).
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The effects of the channel parameters on the magnitude of the numerical distortion of
transients with 7 values less than 96 hours were more difficult to summarize as they did not
appear to follow a general pattern and, as a result, are not presented herein.

Although only stage hydrographs have been used to illustrate the characteristics of the
numerical distortion produced by large A ¢ time steps, computed discharge hydrographs were
subject to numerical distortion of the same order of magnitude.

COMPUTATION TIME

The required computation time on a CDC 6600 computer is shown in Figure 8 for various A
¢ time steps and two upstream boundary transients. Although the computation times presented
in Figure 8 are applicable for 10 Ax sub-reaches, computation times for other NV values may be
readily determined since the required computation time is directly proportional to N.

It is apparent from Figure 8, that the required computation time is reduced considerably as
A t increases from 0.5 hour to approximately 6 hours and then decreases very little as A ¢
approaches 12 hours. Since the magnitude of the distortion increases as A t increases (refer to
Figures 4 and 6), A ¢ time steps in the range of 3 to 6 hours will minimize both the
computation time and the numerical distortion.

36. v T T

30. H

N=10 {ax sub-reaches)

COMPUTATION TIME (SEC)

T=i92 hrs (32-day duration)
T= 48 hrs ( I0-day duration)

1 3 6 12
at{hrs)

Figure 8, Effect of At and 7 on required computer time (CDC 6600)
for the duration of the transient.

SUMMARY AND CONCLUSIONS

The effects of large time steps in the integration of the implicit finite difference equations of
unsteady flow have been investigated for typical single-peak transients at the upstream
boundary. The influence of a range of channel parameters has been included in the analysis.
The conclusions resulting from the investigation are summarized as follows:

1) Numerical distortion, in the form of dispersion and attenuation of the computed

transient, increases as the size of the A ¢ time step increases;
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2) Numerical distortion of the computed transient increases as the 8 weighting factor in the
implicit difference equations appraoches unity;

3) Numerical distortion, measured by S, and P, is of the order of one percent or less for A
¢t <12 hours when the transients at the upstream boundary have a time of rise (1) greater
than approximately 72 hours; this is applicable for 8 = 0.55, L = 100 miles and n = 0.03,
and increases as 0, L, and/or n increase;

4) When 7 > 96 hours, the magnitude of the numerical distortion is approximately

proportional to certain computational, upstream boundary, and channel parameters as
follows:

[Sp Pl =026, 77 ponrL v, T s

5) The implicit difference equations are more stable for large A ¢ time steps and relatively
rapid transients (24 <7 <48 hours) as § approaches unity; however, the truncation error
becomes quite large for A r much greater than approximately 1 or 2 hours.
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EFFECTS OF TIME STEP SIZE IN IMPLICIT DYNAMIC ROUTING

by

D. L. Fread]

ABSTRACT. The effects of the size of the At time step used in the integra-
tion of the implicit difference equations of unsteady open-channel flow are
determined for numerous typical hydrographs with durations in the order of
days or even weeks. Truncation errors related to the size of the At time step
cause a numerical distortion (dispersion and attenuation) of the computed
transient. The magnitude of the distortion is related directly to the size
of the time step, the length of channel reach, and the channel resistance

and inversely to the time of rise of the hydrograph. The type of finite
difference expression which replaces spatial derivatives and non-derivative
terms in the partial differential equations of unsteady flow has an important
influence on the magnitude of the numerical distortion, as well as the
numerical stability of the implicit difference equations. Time step sizes

in the range of 3 to 6 hrs generally tend to minimize the combination of
required computation time and numerical distortion of transients having a
time of rise of the order of several days.

(KEY TERMS: open-channel flow, unsteady flow equations, finite differences,
implicit method, truncation errors)

]Research Hydrologist, Office of Hydrology, National Weather Service, NOAA,
Silver Spring, Md. 20910



EFFECTS OF TIME STEP SIZE IN IMPLICIT DYNAMIC ROUTING
by
D. L. Fread
Research Hydrologist, Office of Hydrology

National Weather Service, NOAA
Silver Spring, Md. 20910

INTRODUCTION

Unsteady or transient flow in open channels such as rivers, canals,
reservoirs, etc., may be simulated by a mathematical model based on the
complete one-dimensional unsteady flow equations which conserve the mass
and the momentum of the flow. Analytical solutions to these nonlinear
partial differential equations do not exist. However, they may be solved
by numerical techniques which use algebraic finite difference equations to
approximate the partial differential equations. It is essential to utilize
a digital computer to perform the numerous computations required by this
solution technique.

Numerous finite difference techniques for numerically integrating the
unsteady flow equations have been reported in the literature. They may be
categorized into the following four methods of solution:

1. Implicit method [Abbott and Ionescu, 1967; Lai, 1967; Baltzer and

Lai, 1968; Amein, 1968; Dronkers, 1969; Amein and Fang, 1970;
Strelkoff, 1970; Kamphauis, 1970; Gunaratnam and Perkins, 1970;
Contractor and wfggert, 1971; Fread, 1972];

2. Explicit method [Isaacson, Stoker and Troesch, 1956; Stoker, 1957;

Liggett and Woolhiser, 1967; Dronkers, 1969; Garrison, Granju and

Price, 1969; Strelkoff, 1970; Strelkoff and Terzidis, 1970];



3. Characteristic method with curvilinear net [Lister, 1960;
Amein, 1966; Streeter and Wylie, 1967; Liggett and Woolhiser, 1967;
Wylie, 1969; Fread and Harbaugh, 1972]; and
4. Characteristic method with rectangular net [Lister, 1960; Streeter
and Wylie, 1967; Baltzer and Lai, 1968; Mozayeny and Song, 1969;
Wylie, 1970; Yevjevich and Barnes, 1970].
0f the four methods, the implicit method appears to be best suited for
modeling transient flows with durations in the order of days or weeks such as
the natural floods occurring in large river systems. The implicit method,
unlike the other methods, theoretically does not restrict the size of time
step because of the numerical stability characteristics of the finite differ-
ence equations. Large time steps can enable the implicit method to be more
computationally efficient than the other methods, particularly for long
duration transients.
The aim of this paper is to investigate the effect of large time steps
on the accuracy of solutions obtained from the unsteady flow equations by the
implicit finite difference technique for transient flows of durations in the

order of days and weeks.

UNSTEADY FLOW EQUATIONS
The unsteady flow equations, the equation of continuity (conservation of
mass) and the equation of motion (conservation of momentum), can be respectively

expressed in the divergence form as:

b | 3{AV)

3t * X -q=0 (1)
(M), A L h sy gy - g (2)
ot X 97 13% f Wy

in which the resistance slope, Sf, is given by the Manning equation, i.e.,
se = n?|v]v/L2.21(5)Y3] (3)



The terms in the above equations are defined as: x = longitudinal distance
along the channel, positive in the downstream direction; t = time; A =
cross-sectional area of flow; V = mean velecity of flow across a section,
positive in the downstream direction; h = water surface elevation; q = known 1ataraé
inflow or outflow per unit length along the channel, positive if inflow; Vy =
velocity of lateral flow in the direction of the channel flow; Sf = resis-
tance slope; n = Manning roughness coefficient; P = wetted perimeter of the
flow cross section; and g = acceleration of gravity.

A derivation of the equations may be found in several references, e.g.,
Stoker [1957], Chow [1959] and Strelkoff [1969]. It is assumed in the
derivation that the flow is one-dimensional in the sense that flow charac-
teristics such as depth and velocity are considered to vary only in the
longitudinal x-direction of the channel. It is further assumed that:

1) the velocity is constant and the water surface is horizontal across any
section perpendicular to the longitudinal axis; 2) the flow is gradually
varied with hydrostatic pressure prevailing at all points in the flow such
that the vertical acceleration of water particles may be neglected; 3) the
Tongitudinal axis of the channel can be approximated by a straight line;

4) the bottom slope of the channel is small; 5) the bed of the channel is
fixed, i.e., no scouring or deposition is assumed to occur; 6) the resistance
coefficient for steady uniform turbulent flow is considered applicable,

and an empirical resistance equation such as the Manning equation describes
the resistance effects; and 7) the flow is incompressiple and homogeneous in
density.

Equations 1 and 2 make up a system of two nonlinear, first order, first
degree partial differential equations of the hyperbolic type. They have x
and t as independent variables and h and V as dependent variables. The
other terms are constants or are functions of independent and/or dependent

variables, i.e., A(x,h),Sf(x,h,V), q(x,t),vx(x,t),n(x,h) and P(x,h).



In order to obtain solutions to the unsteady flow equations, it is
necessary to specify boundary and initial conditions. Boundary conditions
are conditions specified at fixed values of x for various time. These values
include discharge or water surface elevation versus time, or a stage-discharge
relation for the upstream and downstream extremities of the channel reach.
Initial conditions are conditions specified at fixed values of time at
various spatial locations. An initial flow profile for the channel reach
may be determined from a backwater computation [Fread and Harbaugh, 1971]
and used as an initial condition. Besides boundary and initial conditions,
lateral flows, channel geometry and resistance coefficients must be pre-

scribed a priori.

IMPLICIT FINITE DIFFERENCE SOLUTION

Equations 1 and 2 may be approximated by algebraic finite difference
equations; and the continuous x-t region in which solutions of h and V are
desired can be represented by a rectangular net of discrete points. The net
points are defined by the intersection of straight lines drawn parallel to the
axes of the x-t region. Lines parallel to the x-axis are time lines and
have a spacing of At which need not be constant. Lines parallel to the
t-axis represent Tocations along the channel and have a spacing of Ax which
need not be constant. Each discrete point may be identified by a double
subscript (i,j); the first designates the x-position and the second designates
the time Tine.

In the implicit finite difference solution, the time derivatives are

approximated by a forward difference quotient centered between the ith and
i+l points, i.e.,
ok Mign * Kagn K T K ()
ot 20t.

J

where K represents any function or variable. The spatial derivatives are



approximated by a forward difference quotient positioned between two adjacent
time lines according to weighting factors of 6 and (1-8), i.e.,

%é‘z 8Ky g01 = Kigen) + 000 Kipq 5 - K 5)

BX; BX; (5)

Functions other than derivatives are approximated by using weighting factors

similar to Eq. 5. Thus,

ko= 0K 5y 7 Kivt,41) 4 (1-6)(K; 5 * Ky, 5)
5 2

(6)
Upon substituting the finite difference operators defined by Equations
4, 5 and 6 into the unsteady flow Equations 1 and 2, the following implicit

difference equations are obtained:
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A weighting factor of 6 = 1 yields the fully implicit scheme used by
Baltzer and Lai [1968]. A weighting factor of 6 = 1/2 produces the "box"
scheme used by Issacson [1966], Amein [1968], Amein and Fang [1970], and
Contractor and Wiggert [1971].



Equations 7 and 8 form a system of two algebraic equations which are
nonlinear with respect to the unknowns, the values of h and V at the net
points (i,j+1) and (i+1,j+1). The terms A and Sf are known functions of h
and/or V. The terms associated with the net points (i,j) and (i+1,j) are
known from either the initial conditions or previous computations.

The two equations cannot be solved for the unknowns since there are two
more unknowns than equations; however, by considering all N number of points
along the x-axis simultaneously, a solution may be obtained. In this way, a
total of (2N-2) equations with 2N unknowns may be formulated by applying
Equations 7 and 8 recursively to the (N-1) rectangular grids along the
x-axis. The boundary conditions at the upstream and downstream extremities
of the channel reach provide two additional equations which are necessary
for the system of equations to be sufficiently proposed to yield a solution.
The resulting system of 2N nonlinear equations with 2N unknowns must be
solved by an iterative procedure. A functional iterative process, called
Newton-Raphson Iteration [Crandall, 1956; Amein and Fang, 1970], is used
to solve the nonlinear system. The iterative process converges to a
solution of acceptable accuracy at a quadratic rate; this may be improved
by using parabolic extrapolation to obtain the first approximation of the
solution from solutions determined at previous times. The coefficient
matrix of the linearized system of equations has a banded structure which

lends itself to very efficient solution algorithms, e.g., [Fread, 1970].

STABILITY OF THE IMPLICIT EQUATIONS
The solution of a system of finite difference equations requires that
numerical errors of round-off, introduced in the computational procedure,
not be amplified into an unlimited error. The stability of the nonlinear

difference Equations 7 and 8 can be investigated by a Fourier analysis of

-6~



the error propagation properties of Tinearized forms of the difference
equations. This stability analysis, known as the von Neumann method
[0'Brien, Hyman, and Kaplan, 1951] has been used by various investigators,
e.g. Abbott and Ionescu [1967] and Leendertse [1967], to show that, in
general, an implicit finite difference formulation of the unsteady flow
equations is unconditionally stable for any ratio of Ax/At when the 6
weighting factor is restricted to the range, 1/2 < 6 < 1. Thus, according
to this stability analysis, the stability of the implicit method does not
depend on the ratio, Ax/At, as do the explicit and characteristic methods.
However, the inability to include in the stability analysis the nonlinearities
of Equations 7 and 8, as well as the effects of boundary conditions, causes
the von Neumann technique to be heurisitic and somewhat inconclusive.

Under certain conditions, the implicit difference equations have been
observed to exhibit instabilities [Liggett and Woolhiser, 1967; Baltzer and
Lai, 1972]. In this investigation, numerical instabilities were encountered
for certain upstream boundary hydrographs and At time steps; this will be

discussed later.

ACCURACY OF THE IMPLICIT EQUATIONS

Solutions obtained from the implicit difference Equations 7 and 8 have
been mathematically shown to converge to the true solutions of the partial
differential Equations 1 and 2 as Ax and At approach zero [Abbott and Inoescu,
1967 and Leendertse, 1967]. Thus, if channel length and the irregularity of
channel geometry are used to select Ax, the accuracy of the implicit differ-
ence solution decreases as the size of the time step increases.

Truncation errors, related to the magnitude of the time step, arise

during the integration of the implicit difference equations. The truncation



errors distort the solution via numerical dispersion and attenuation of the
computed transient. Henceforth, the truncation error in the solution will
be referred to as "numerical distortion." Also, as will be shown later,
the characteristics of the discharge hydrograph at the upstream extremity
of the channel reach have a significant effect on the accuracy of the
solution.

The characteristics of the numerical distortion are investigated herein
via numerical experiments in which Equations 7 and 8 are applied to
upstream boundary transients described by the following four-parameter,

Pearson Type III distribution:

1
) = g 0001 (5 T el (9)
in which
0= Q... /0, (10)
vy = Tg/T (11)

The terms in the above equations are defined as follows: Q(t) = discharge

at any time (t), Q0 = initial steady discharge as computed by the Manning

equation, QmaX = maximum discharge at the upstream boundary during the

transient flow condition, T = time of occurrence of Qmax’ Tg = time associated

with the center of gravity of the upstream hydrograph, p = hydrograph ampli-

fication coefficient, and y = a skewness coefficient of the upstream hydrograph.
The downstream boundary condition is specified by the following implicit

stage-velocity relationship which is corrected for transient effects:

2/3. 1/2
_1.486 ,A S
V== (E) f (12)
in which
s. = (qu a(AV) a(sz) _ 3h (13)
£Vt X x )/ 9A
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This boundary condition allows the transient to pass the downstream extremity
of the channel reach with no numerical reflection.

The primary objective of this investigation is to study the effect of the
size of the time step on the solutions of the implicit difference equations.
Therefore, selected parameters describing the physical characteristics of the
channel reach are held constant throughout the study except in special
instances where a single parameter is perturbed in order to determine its
effect on the results. The selected channel parameters are as follows:
channel reach length (L) = 100 miles; channel bottom slope (SO) = 1/5280

ft per ft; Manning roughness coefficient (n) = 0.03; wide rectangular cross-

section with surface width (B) = 2000 ft; number (N) of Ax sub-reaches = 10,

5 ft. Convergence criteria for h and V

H

and initial depth of flow (YO)

in the iterative solution were chosen as : {hk+]—hk[ 5_1x10°6 and
th+] - kai 1x10'i where the superscript k denotes the number of jterations.

The effect of the magnitude of the time step on the accuracy of the
computed solutions is determined by systematically increasing the time step
from At., 2 relatively small value in the order of minutes, to a relatively
large value of 12 hrs. The Atc time step is the maximum size time step that
can be used in an explicit method; it is computed from the Courant condition
[Stoker, 1957; Strelkoff, 1970] which insures numerical stability when friction
effects are relatively small:

At < Axi/[|vi| + (gA/B)11/2] .« . (minimum for i=1 . . . . N) (14)

E

The stage hydrographs obtained using Atc in Equations 7 and 8 are
considered the standards to which the solutions computed with At time

steps of 1, 3, 6 and 12 hrs are compared.



This follows the approach used by Abbott and Ionescu [1967] for testing
the effect of the magnitude of At in direct finite difference approximations of the
unsteady flow equations. The fact that the truncation error is a minimum
when the time step is Atc follows from a Taylor series analysis of
Equations 7 and 8, as well as from the fact that as At increases beyond
Atc the response properties of the computational system depart from those
of the physical system.
Deviations from the standard hydrographs are measured by the following
relative root mean square error (Se) and relative error of the peak (Pe)

of the hydrographs:

- 1/2
1000157 (v, - ys)41
S 172 o)
n ysp
Pe = 100 (T-y /ys,) (16)

in which n = total number of hydrograph values being compared, y; = stage value
computed with a particular At time step, ys; = stage value computed with a

At time step, Yp * maximum (peak) value of Yoo and ysy = maximum value of

ys;-

Figures 1 and 2 illustrate typical numerical distortions of the computed
hydrographs at the downstream boundary for two variations in the upstream
boundary condition. In Figure 1, the time of rise (t) is 48 hrs, while in
Figure 2, T is 120 hrs. The hydrographs obtained with a time step of 12 hrs
differ from those computed with a time step of 0.5 hr. The rising 1imb of
the former occurs earlier than the latter, while the falling 1imb is delayed
and the peak is attenuated. The distortion is more pronounced in Figure 1
than in Figure 2 for the same values of At and 6. Also, for a single T

value, the distortion is significantly greater for 6 = 1 than for 6 = 0.55.
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A quantitative evaluation of the numerical distortion, in terms of Se
and Pe, is shown in Figure 3. The influence of 6 and T on the degree of
distortion is significant. This was also observed for other test hydrographs.
Thus, it may be concluded that the lower range of allowable 6 values
minimizes the distortion (dispersion and attenuation) which results from the
use of Targe time steps in the integration of the implicit difference
equations. Also, the degree of distortion becomes less as the time of rise
of the input hydrograph increases. Several correlations of Se with the
size of the At time step are shown in Figure 4. The correlations are given
for various T and p values of the upstream boundary hydrograph. The Se
error is associated with the stage hydrographs computed at the downstream
boundary of the 100 mile channel reach described previously.

An examination of Figure 4 yields the following information concerning
the numerical distortion resulting from the use of At time steps considerably
larger than those determined from the Courant Condition (Eq. 14):

1) The magnitude of Se increases with the size of the At time step;

2) As T, the time of rise of the upstream hydrograph increases, the

slopes of the (Se, At) curves decrease;

3) The magnitude of Sg 1s lTess than 1% for T > 96 hrs and At < 12 hrs.

The solid curves in Figure 4 are applicable for a 6 of 0.55, a value
chosen so as to minimize numerical distortion while conservatively insuring
theoretical stability of the computations. The dashed portion of the curves
are applicable to 6 values greater than 0.55 which are required for numerical
stability since lesser values of 6 cause instabilities to arise in the

iterative solution of the nonlinear difference equations. The selected ©

values are optimal in that the magnitude of numerical distortion is minimized

while numerical stability is achieved. The optimal © values vary with At and
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T. An illustration of the variation with At and t is given in Figure 5 for a
p of 20. By inspecting Figures 4 and 5, it can be seen that the tendency
for stable numerical computations decreases with increasing values of At and
with decreasing values of 6 and T.

The effect of the At time step size on the attenuation of the computed
stage hydrographs at the downstream boundary is presented in Figure 6 for
various combinations for T and p. In Figure 6, Pe is negligible for
T values greater than 48 hrs; however, Pe can be significant for At > 3 hr
when T < 48 hrs.

The results presented thus far are applicable for the constant channel
parameters selected previously. In order to determine if the numerical
distortion resulting from large time steps is sensitive to the values of
the channel parameters, these are perturbed and the resulting effects on
Se and Pe are observed. The observed effects may be summarized by the

following approximation:

(S7gs P7g) = (S ,P,) (17)

e’ e

in which the prime superscript denotes the magnitude of Se or Pe associated
with any channel parameter (y~) having a different value than the constant
value of the corresponding parameter (y) for which Figures 4 and 6 are
applicable. The correction factor n, is presented in Figure 7 for the var-
ious channel parameters in terms of the ratio, y”/¢. It can be observed
from Figure 7 that the numerical distortion increases when either the channel
length, L, or the Manning roughness factor, n, increase; and decreases when
either the magnitude of the initial depth of flow, Yo’ or the channel bottom

slope, SO, increase. The channel width, B, was observed to have little or

no effect on the magnitude of the numerical distortion. The magnitude of
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the numerical distortion increases with the distance from the upstream
boundary to the channel Tocation in question.

The effects of the channel parameters on the magnitude of the numerical
distortion of transients with t values less than 96 hours were more difficult
to summarize as they did not appear to follow a general pattern and, as a
result, are not presented herein.

Although only stage hydrographs have been used to illustrate the charac-
teristics of the numerical distortion produced by large At time steps,
computed discharge hydrographs were subject to numerical distortion of the

same order of magnitude.

COMPUTATION TIME

The required computation time on a CDC 6600 computer is shown in
Figure 8 for various At time steps and two upstream boundary transients.
Although the computation times presented in Figure 8 are applicable for
10 Ax sub-reaches, computation times for other N values may be readily
determined since the required computation time is directly proportional
to N.

It is apparent from Figure 8, that the required computation time is
reduced considerably as At increases from 0.5 hr to approximately 6 hrs and
then decreases very 1little as At approaches 12 hrs. Since the magnitude of
the distortion increases as At increases (refer to Figures 4 and 6), At time
steps in the range of 3 to 6 hrs will minimize both the computation time and

the numerical distortion.

SUMMARY AND CONCLUSIONS
The effects of large time steps in the integration of the implicit finite

difference equations of unsteady flow have been investigated for typical
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single-peak transients at the upstream boundary.

channel parameters has been included in the analysis.

The influence of a range of

from the investigation are summarized as follows:

1)

2)

3)

Numerical distortion, in the form of dispersion and attenuation of
the computed transient, increases as the size of the At time step
increases;

Numerical distortion of the computed transient increases as the ©

weighting factor in the implicit difference equations approaches unity;

Numerical distortion, measured by Se and Pe, is of the order of one
percent or less for At < 12 hrs when the transients at the upstream
boundary have a time of rise (t) greater than approximately 72 hrs;
this is applicable for 6 = 0.55, L = 100 miles and n = 0.03, and
increases as 6, L, and/or n increase;
When T > 96 hrs, the magnitude of the numerical distortion is
approximately proportional to certain computational, upstream
boundary, and channel parameters as follows:

S0 Pl = 8t 6, 770, o, ny Ly ¥, s

The implicit difference equations are more stable for large At time

steps and relatively rapid transients (24 < 1 < 48 hrs) as ¢ approaches

unity; however, the truncation error becomes quite large for At much

greater than approximately 1 or 2 hrs.
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