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TRANSIENT HYDRAULIC SIMULATION: BREACHED EARTH DAMS

By Danny L. Freadl, M. ASCE

KEY WORDS: breach; computer; earth dams; hydraulics; method of charac-
teristics; numerical model; reservoirs; simulation; St. Venant equations;
transient open-channel flow.

Abstract: A conceptual method to alleviate flood damages due to over-
topping failures of small earthfill dams is the incorporation of a
relatively thin erosion retarding layer within the dam. This paper
investigates the reduction in the reservoir release due to the hypothet-
ical erosion retarding layer. In addition, the paper provides a method
for the determination of an optimal location of the layer so as to
minimize the maximum possible reservoir release due to a gradually
breached earth dam. The transient reservoir flow is simulated by a
numerical model, based upon the solution of the one-dimensional St.
Venant unsteady open-channel flow equations. These equations are
solved by the method of characteristics, with appropriate boundary
conditions incorporated into the solution procedure. The numerical
simulation model is used to determine the reduction in reservoir re-
lease due to a single retarding layer and its optimal location for a
wide range of pertinent geometric, hydraulic and dynamic parameters.
The sensitivity of .the results to variations in the above parameters

is discussed.

lResearch Assistant, Civil Engineering Department, University of
Missouri-Rolla, Rolla, Missouri 65401.
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INTRODUCTION

Numerous small homogeneous earthfill dams, up to approximately
100 ft. in height, have failed or are subject to possible failure
from over-topping because of inadequate spillways (20, 31).2 Such
failures may cause considerable property damage and even the loss of
life. Inadequate spillways prevalent on many dams are generally due
to the lack of engineering consultation during design and construction;
however, even with engineering advice, incomplete or unavailable
hydrologic data may result in the spillway being designed for less
than the critical storm, resulting in the eventual failure or breach
of the structure.

A conceptual method of alleviating downstream damages from
breached earth dams is to provide a relatively thin erosion retarding
layer at an optimal elevation within the dam. Thus, in the event of
an over—topping of the dam, the resulting breach would not develop con-
tinuously but rather be delayed by the hypothetical erosion retarding
layer. Such a controlled breach would produce two distinct flood waves
of a reduced amplitude compared to the single flood wave produced by
a breach of an earth dam without a retarding layer. Consequently, a
reduction in downstream damages would be obtained.

In this paper, the hydraulic characteristics of transient reser-
voir flow resulting from gradually breached earthfill dams are investi-

gated in order to ascertain the reduction of the flood wave peak due

2Numerals in parentheses refer to corresponding items in Appendix I, -
References
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to a retarding layer. This reduced flood wave peak discharge is shown
to be directly attributable to the retarding layer's effect in reducing
the reservoir outflow.

Basic assumptions concerning the geometric and dynamic aspects of
the phenomenon are made in order to develop a generalized numerical
simulation model of the transient reservoir flow due to a breached dam.
An experimental model is used to verify the numerical model. The numer-
ical model is used to determine the expected reduction in outflow due
to a single retarding layer for several pertinent geometric, dynamic,
and hydraulic parameters. Also, the elevation of the retarding layer
is optimized such that the maximum possible outflow from a gradually

breached dam is minimized.

THEORY

St. Venant Difgerential Equaticns. - The basis for formulating a
numerical simulation model of the transient reservoir flow due to a
gradually breached dam is the premise that such a phenomenon is well-
approximated by the one-dimensional differential equations of gradually
varied, unsteady channel flow. These equations are attributed to
A.J.C. Barre' de Saint-Venant and are known as the ''St. Venant equations'.
They are derived in several references (5,11,15,25,27) and are simply

stated herein as

»—a-lz + .@.— éz -
=t D ~x + v ~x Oveennenens e e (1)
SAANEE g == + g(Sf-S O O (2)

Q.

rr
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in which v = the depth of flow in the channel, v = the average velocity
across a section of channel, D = the hydraulic mean depth which is equiva-
lent to A/T, T = the width of the free water surface, A = the cross-
sectional area, g = the acceleration due to gravity, x = the distance
along the channel, and t = the time. In this paper, the channel (reser-
voir) is prismatic, and SO = the slope of the reservoir bottom which

is small and is approximated by sin ©, where €& is the angle of inclina-
tion of the reservoir bottom with a horizontal datum line. Hydrostatic
conditions exist throughout the flowing fluid, and the resistance to
flow due to the shear force at the wetted perimeter P is accounted for
by use of Manning's equation for steady uniform flow. Thus, the fric-

tion slope S which is the slope of the energy grade line, can be

f’
approximated by

2

s_ =12 4y3v e (Y
2.2 R

in which n = the Manning coefficient, and the hydraulic radius R = A/P.

- Hence, the St. Venant equations, which are quasi-linear hyperbolic

partial differential equations, describe the transient flow within the

element of water that is bounded by two vertical cross sections shown

in Fig. 1. Eq. 1 is known as the ''equation of continuity'" and mathemat-

ically expresses the Law of Conservation of Mass of the incompressible

fluid within the element. Eq. 2, which is derived from Newton's Second
,

Law of Motion, is known as the ''equation of motion'" and expresses the

Law of Conservation of Momentum of the fluid within the element.

The initial condition of the flow within the reservoir, i.e. the

depths and velocitles, must be known in order that soluticns to the
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St. Venant equations may be obtained. The initial condition of the
flow may be steady gradually varied, unsteady gradually varied, or
steady uniform flow, etc.

Boundary conditions at the upstream and downstream exXxtremities
of the reservoir are essential to the solution of the St. Venant equa-
tions. A boundary condition is a known relationship between any two
of the variables v, y, t and the flow rate Q throughout the time that
solutions to the equatidns are desired. The upstream boundary condition,
used in this paper, i1s a known relationship between Qu and t, i.e.
Qu = Qu(t). The downstream boundarv is provided by a stage-discharge
relationship, i.e. Qd = Qd(y). The downstream boundary is located
a short distance upstream of the breached dam at a section where the flow
is well-approximated as one-dimensional and the surface drawdown due
to the outflow through the spillway and breach is negligible.

Reservoirn Geomethy. - The reservoir cross 'section is assumed trape-
zoidal with side slopes of l:vertical to z:horizontal, as shown in
Fig. 2. Only the prismatic portion of the idealized reservoir shown
in Fig. 3 is considered to contribute to the outflow released by a
breached dam. The storage in the upper reaches of the reservoir pro-
vides little ccntribution to the outflow since accumulated sediment
deposits soon reduce this storage to a negligible quantity. Thus, the
upstream boundary is located at the upper end of the prismatic reser-
voir, a distance L from the downstream boundary.

The reservoir bottom slope, SO, is constant and defined as
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FIGURE 3.

IDEALIZED RESERVOIR
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where n is the height of the dam and L' is the distance from the down-
stream boundary to the intersection with the reservoir bottom of a
horizontal line drawn from the top of the dam, as shown in Fig. 3.

In this investigation, L is defined as

where Kl is a constant.

Breacn Geemetry and Dynamics. - The breach is assumed to commence
forming at the instant the maximum capacity QO of the emergencv and/or
principal spillwav is exceeded and the dam is over-topped. Referring
to Fig. 2, the spillway is located at an elevation nsp, and the breach
is assumed to form as a '"V" where the acute central angle ¢ of the
"V-breach'" remains constant throughout its formation. This breach
geometry is assumed to approximate that caused bv the over-topping of
a homogeneous earthfill dam (31).

The breach forms at a rate denoted by A, which has dimensions of
fps, and is defined as the vertical distance traversed by the bottom-
most point of the V-breach during an increment of time. Two basic

types of failure rates, », are investigated herein. The first type 1is
A= e e e e (6)

where XC is constant for a particular interval of time during the fail-
ure or for a particular span of vertical distance within the dam; ~

may be expressed as a step-function of either time or elevation. For the

other type of failure rate, * is assumed to be an exponential function of

the head on the V-breach, where the head is defined as (yd - Wv).

Thus,
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A = exp [Ke(yd—nv)] e T (7)
ln(l+lm)
where Ke T e L it ettt eear e er ettt (8)
ydm

and yd is the transient reservoir depth at the downstream boundary,
nvjs the elevation of the bottom of the V-breach, and Am and Yqm 2Te
respectively the maximum failure rate and reservoir depth at the
downstream boundary when n, = 0. When the bottom point of the V-breach
is in contact with the erosion retarding layer, the failure rate is
significantly reduced to a value of A/KK, where K.A is a constant
greater than unity. The top of the erosion retarding layer is denoted

as Ny the bottom as nlb’ and the thickness as nld'

NUMERICAL SIMULATION MODEL
Dimensional and Geometrlical Consdlderaticns., - The St. Venant

equations are nondimensionalized herein by defining the following

dimensionless variables

t v
*) v *) v * p:8 * |
V=;-,v=‘;,x='i,t=—L——* ................ (9)
n
x *+ %9
s p_ Cpleyy m2epy Hepy )
D =5—"= I (10)
n (cl—cz)(cl—2c2+2c2y )
* * %7
x R (Cl-2C2+C3)(Cly —2c2y +c2y )
R =% " AT e (1D)
) n (cl—cz)(cl~2c2+c3y )
in which ¢y = % » Gy =2, and cy = 2n/l+zZ ................ (12)

and T is the ratio of the reservoir top width T to the reservoir length

L. The n subscript indicates that the subscripted variable is evaluated
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*

at the downstream boundary when t = 0, nv = n. The superscript

is used henceforth to denote a variable as being dimensionless.

Substitution of Eq. 3 along with the above dimensionless variables

into Eqs. 1 and 2, taking care to properly express the partial derivatives,

=

yields the following dimensionless form of the St. Venant equations

* *
~ % 0
Aokt B s (13)
at ax 9%
sk l *I *
v v
v v oy 3 _
—5 + ———;+K2A*+ %473 —KQ‘O .......... (14)
ot ax oxX
(cl—c7)
where = U (15)
1 c
1
gn (c,-c,)
K. = O (16)
2 q 2
o
-2c.+
) gnzL (c1 2c2 c3) 4/3
K3 = VE [ TR ) E (17)
2.21n 1 2
s L0 (e -c,)’
gS In (c,-c
K, = —2 L U (18)
4 QZ
o

The following dimensionless variables are defined in order that

the boundary conditions may be expressed in dimensionless form

\ Q Q
* AL u * d
A= (c,-c,) , Q =— ,Q e PN (19)
Q 1 72 Q, d QO
x0T x Ty x The x0T
T]Sp n }‘\V n ’mlt n ,‘ilb ﬂ‘ 3
n
* 1d
n L T TR rereeeeeeesseieenii (20)
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The u and d subscripts refer to the upstream and downstream boundaries,
respectively.

The above normalizing procedure allows y* and n*v to take on vaiues
from unity to zero and v* and Q* to assume values relative to an initial
condition of unity. Also, this procedure allows the initial flow QO
to be expressed in terms of the dimensionless failure rate A*. This
normalizing procedure is utilized for convenience in the presentation
of results.

Tnitial Conditicns. - Immediately prior to the initiation of the
breach, the depths and velocities along the reservoir are those of a
steady, gradually varied flow having a flowrate of Qo. The flow pro-
file is either M1 or S1 backwater curve depending upon SO being either
mild (See Fig. 3) or steep, for the steady flow rate Qo' In either
case, the flow is subcritical in the portion of the reservoir with
storage that contributes to the outflow when the dam is breached.

Referring to Fig. 1, depth and velocities at &x intervals of
length along the reservoir may be computed from the steady, gradually

varied flow equation (5, 15) which expressed in difference form, is

]
N P4
S(y+vT/2g) _

ix SO Sf ................................. (21)
where Sf is defined as the average friction slope along the £x reach,
i.e.

<+
(SfI SfII)
Sf = ST T et (22)

Substitution of the previously defined dimensionless variables and

Eq. 22 into Eq..21 and rearranging, yields the following dimensionless




[
w

equation
* * * 2.10/3 * * k 2 4/3
- -2
(Fg+y I)(Cly I Zczy tey ) +Gl(cly 172,y e,y g )
4/3_
—Gz(c1—2c2+c3y I) 1 T (23)
in which
. SQL y* . G1
g Nn 11 * * * 2.2
(eyy p772¢,¥ 17¥e,y 11 )
* L
Galc,-2c,+c,y )4/3
B 2071 2 737 11 (24)
( ; % 2)10/3 .....................
€Y 117e%Y 117%Y 11
Qoh
O =l (25)
1
2gn
2 2
nLe,
Gy = T i i i e e et e e (26)
2 4 42Nn13/3
and N is the number of §x reaches along the reservoir, i.e
\ :L‘____
N R E R R PR 27)

~

23, has only one unknown variable, y 1’ which

*
I i .
fty 1 s known, Eq
may be deterfiined by Newton's Iteration Technique (10, 11)

The Newton Technique 1is an iterative method for solving a nonlinear

equation of the form, f(x7) 0, by generating a sequence of successive

approximations which, if a proper initial value of x~ is used, converges

to a desired root of the equation. The recurrence formula is

f(x~ )
e N

and the k and k+1 subscripts indicate the kth

. P df
in which f (x k) = T



and (k+l)th approximate values of the desired root (6).

*
The first &x reach, for which y . is sought, is located immediate-

i

*
ly upstream of the downstream boundary, hence y - 1. The first

*

’ 7 * *
approximation for y I is simply taken as y 1’ After vy I has been com-

*

puted to within a prescribed error tolerance, v I is computed from the

following
* (ej-cy)

I R
(eyy ;72e,y gte

* 2

¥ 1)

Proceeding upstream from the downstream boundary, depths and
velocities are computed for sections located at 4x intervals along the
. . - ol * I3 ~ .
reservoir, by replacing the value of y [ Eq. 23 with the recently

*
computed vy and repeating the above procedure. This process is re-

I
* * )
peated until all desired values of y and v are determined. These

become the initial conditions which are necessary to start the proce-
dure for solving the St. Venant equations.

Steady State Patrameters. - The following steady state dimensionless
parameters are used to monitor the type of flow regime at the upstream

boundary

where yn is the normal depth, yC the critical depth, and Vg the

sequent depth of the normal depth Yo all for a steady flow of Qo'
) *
The normal depth y n is obtained by applying Manning's equation to

the flow at a section. Thus,

Qn x O
o , 2/3 ko ko k2 .5/3
1 &9S_IY§ (Ll-2t2+c3y n) - KC1> n—zcl} +L?y n)ﬂ =0
' QO

.............‘.....o.-........-o----..-......---.....(31)
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*
which is solved for vy A by Newton's technique where the first approxi-

*
mation for v is determined by tacitly assuming the reservoir is a
n

wide channel. Thus,

% Qn 3/5
n = [ 1/2 1 q
1 1.4980 (cl-cz)

<

Upon applying the principle of minimum energy (5) to a flow cross

section, the following equation is developed

*
where Lq. 33 is solved for y . by Newton's technique with the first

*
approximation for y . taken as

RN . SRSV
’ Cl gl/z

I e e e i e (34)
(cl—cz)

SO is mild and the initial backwater curve is the Ml type if

k B * N~
y e 22 S, (33)

SO is steep and the backwater curve is the S1 tvpe if

When the latter condition prevails, the upstream boundary is repositicn-
¥ * I

ed downstream such that the depth vy u exceeds the sequent depth, y

In this way, the flow in the portion of the reservoir, ror which the

St. Venant equations and boundary conditions are applied, is subcritical.

This procedure introduces negligible error into the simulation model,



since the sequent depth is quite small for all reservoir sizes and
flowrates of practical interest. If it should be desired to simulate
both the supercritical and subcritical flow upstream and downstream
of the moving flow discontinuity (hydraulic jump) at the upper end of
the reservoir, an explicit numerical technique known as the Lax method
(11, 29, 30) can be used to solve the St. Venant equations when they
are expressed in their ''conservation form'.

The sequent depth y*s is determined by applying the momentum
principle (5) to the discrete section of the reservoir at which a

discontinuity occurs. Thus,

Q ° *
c c,y
2 % 2 27
. +ny (;i_c+ 5y - K_ =0
( -2 ‘e % Z) s 2 3 s
gn Cly < 2Y 2y
......... e N 1)
2 *
c c.y
0 2 % 2, 71 2
where Kg = xR %2 + 0Ty (G meytt 3 =)
gnleyy ~2c,y Fe,y )
..................................................... (38)
~ *
Eq. 37 is solved for vy < by Newton's technique with
% ' 2 % 2
* v o / 8Q, v
y =— (/1 + S L) e (39)
s A 3 2k
1 gn (cl%:a,) Vo
~ i
(c,-c,)
*
where v = L (40)
U ( P % . * 2)
cly n _czy " czy n
Numerical Solutdion cf St. Venant Eguations. - The St. Venant

equations defy a closed-form solution; however, they may be solved by
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numerical techniques such as the explicit method (3,7,11,13,14,16,18,
21,22,26,27), the implicit method (1,3,7,18) and the method of charac-
teristics with a characteristic network (2,3,7,9,11,17,19,28,3%) and a
rectangular network (4,8,19,23,28,33). Each of the techniques offer
particular advantages and disadvantages (11,18). The method of charac-
teristics with a characteristic network is used herein because of its
inherent numerical stability and the ease with which boundary conditions
may be introduced into the solution procedure. Also, the prismatic geo-
metry of the idealized reservoir and the desirability of obtaining
solutions at only the upstream and downstream boundaries lend to the
selection of the method of characteristics.

Characteristic Equations. - In the method of characteristics, the
two St. Venant partial differential equations are converted into four
ordinary differential equations, called 'characteristic equations',
which may be numerically integrated subject to specified boundary
conditions. The conversion 1s accomplished by forming a linear com-
bination of Egs. 13 and 14 through the use of a multiplier, | (4,11,

19,24,27,28). Thus,

. . o . o o X L x
3 ( v g , OV v . oy
_J—,\ * - KlD N T % \,J(_—‘ v - na 1\2 '—‘"‘* +
ot X ox at gx X
*, %
K3[v Y
— - K O vovviiiin, e e e

i

Upon rearranging Eq. 41 such that partial derivatives of y and v

are grouped separately, i.e.



v oV oy , ay
DS+ v+ e A e G SO R B
ot ‘ oX ot IX
Bl
K3lv Y ”
K ) = 0 i e e e ~
R
5 *
The bracketed quantities may be made total derivatives, i.e. —X; and
* dt
dy
*
dt
D* *
K
*
if S (43)
- dt
* d *
and L (44)
- dt
The simultaneous solution of Egs. 43 and 44 yields Y. Thus,
/x p*
/o1 -
o=y e (43)
2
Substitution of Eq. 45 into Egs. 42-44 and rearranging, yields
Lk %
* /K * LV
dv / 2 dy L3 ' < =0
% Y T% % %573 SR, T 0 (46)
dt KlD dt R
C-
*
: ) -
Foo= - y'{(leD ........... (47)
dt
* K * K v fv*
dv 2 dy 3000 T ,
_“—;‘F v * * + %473 '(4 O (48)
dt KlD dt R
C+
*
dx Ao X )
S = v + vKll‘\zD ............... (49)




Eds. 46 and 47 are associated with the C- characteristic curves
) * % . Cn
in the x -t solution plane, shown in Fig. &4; Egs. 48 and 49 are assoc-
iated with the C+ characteristic curves. It 1s noted that Egs. 46 and 48
contain no partial derivatives; however, the additional Egs. 47 and 49
are required since Egs. 46 and 48 are valid only along the curves defin-
* * 3 : ]
ed by the dx /dt expressions. All four equations are valid at inter-
* k
section points, such as p, in the x -t plane. Thus, if the values of

* Kk % *
X ,t ,y and v are known at points, 1 and r, a numerical integration of

the equations will produce the values of X*,t*,y*, and v* at point p.

In this way, the values associated with all intersection points in the
x*—t* plane are determined sequentially from left to right while pro-

gressing upward in the t*—direction.

The numerical integration of Egqs. 46-49 may be accomplished by
various finite-difference approximations with different orders of
accuracy (2,3,11,19,29). It was found that a simple first-order approx-
imation of the form

*
X

- * * * )
f Foof(x )ydx =~ f(x r)(x U I N (50)

*

X
r

*
provided sufficient accuracy since the variation of v and v with x
* .
and t 1is relatively small for a flow produced by a gradual breach.
Upon applying Eq. 50 to Egs. 46-49 and rearranging, four equations,
which are linear with respect to the variables at location p, are ob-

tained as follows
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v =v =Fo(y* -y J+F. (t -t D)=0.........0. e (51)
r L T r 3
C-
* *
x -x =F (¢ -t ) Joiiiiiaiaeieai (52)
r i r
* . * * . * 0
vV FS(y p«y l) F6(t -t l) .................... (53)
% % C+ .
X p"‘( ]_—F4<t p“‘L l> .................... (5 )
* PR
where Fl=v o vklkzD R (553)
_ )
FZ = v . D* .................................... (56)
17 r
* *
KBV r!V r!
— P
s x4/3 4 (37
r
= v+ /K K.D 8
F!+ = vy 1 VRIKOD (58)
/K,
Foo= /T (59)
Py
N
K,v |V
37101
v e~ PO )
Fs = %473 *4 (60)
1
, * * * - ; .
Substitution of y 1 and y . for v in Eq. 10 and 11, provides the values
k % * R*
f R .
ot D 1’ D r’ R 1’ r
Upstraam Beundary. - The V-breach is assumed to occur during a

short duration of time relative to the time base of the reservoir in-
flow hydrograph. The inflow occurs only at the upper reach of the
idealized reservoir such that the reservoir is not subjected to any

lateral inflow. Hence, the inflow to the reservoir may be considered



8%
(97]

relatively constant throughout the formation of the breach, and the

upstream boundary condition is expressed as a constant inflow, i.e.

e}

Thus, from continuity considerations

*
* Q J(cl_CZ)

1

x * x 2
<Cly u GY U+c2y u )

*
The value of x is known since it represents the location of the up-
u

*
stream boundary; hence, t 4 may be computed from the C~ Eq. 52,

Substitution of Eq. 63 into the C- Eg. 51 yields

—_— * * ) * * 2>+ * (
( u_rZy u)<cly u C2y U‘CZE u Q u €17c

* . % * %
where F = -v r+F2y r+F3(t u—t ) (66)

where the uo subscript is associated with the previously computed up-

*
stream boundary pcint shown in Fig. 4. The value for v u is computed

from Eq. 63.



X k% *
Intericr Podlnts. - The unknown values of x ,t ,y and v at any

interior point designated by a p subscript may be easily obtained from

the simultaneous solution of the four linear Egs. 51-54.

Thus, * x % "
N (x 17X r+Flt r—Fét l)
t e L ettt (68)
P <F1'F4>
R ) 69
X > X 4(t TE ) e (69)
* + * +F * +F * * ) F ( *
S vy v (FEpy (FRey PER(E -t )-Fge e )] (70)
P (F2+F5) o
ok * * S * (7D
v ° = v l~r5(y p—y l)—Fé(t p—t l) .................... 7

Downstream Boundary. - The location of the downstream boundary is

known; hence,

x4 = L i et e i et e e e e e e e e e, (72)
*
and t q may be computed from the C+ Eq. 34, i.e.
* *
* * N (x 4-x 1) (73
E gt FA ............................... )

The downstream boundary condition is given by stage-discharge

relationships for the spillway and the V-breach. The elevation of the

*
spillway crest n sp is constant, however, the elevation of the bottom

* g %
b’ and A . The

*
of the V-breach n v is a function of td’ n 1e’

, *
following step-functions express this variation of n v

If n > n

* x * ~
then n =n - A (t ,-t O) ............................ (75)



* *

1 £ S Y . C ottt e e
however if n v n 1t (76)
k* * %* *
then gk e 0 o 1] 7
N, =N g, R R R R
A
1f < * < * 78
nlb <n vo n Db frrrere e (78)
%

h . Sy a, S 79
then A v n vo K;\ t d A LI ( )
h £ < 8

owever if n v n R R PRRER (80)

o * * )* * * * a1
then n s =N T [A ¢ d‘kk(” vo N lb/] .................. (81)
If 0<n’ <n 82

s n vo n Ih Tttt ( )

o k% A* * * ; 8

then kn ¢ - N vo (t d_F dol T (83)
*

however if n v S ) (84)
*

then no, = 0 (85)

The second subscript, o, indicates that the subscripted variable is the
previously computed boundary point as shown in Fig. 4.

The velocity at the downstream boundary is expressed in terms of
the discharges of the spillway and the V-breach, and the reservoir cross-
section, i.e.

* % . 5/2 . * ® 3/2
[K.(y .-n ) + K'K (y .-n ) 1(c,~c.)
v* _ 5 d v 6 d SE 1 72 .. .(86)

* ) * 2
(e1y 4m2e¥ 4*ery 4 )
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* *
if . (88)
Ta sSp
and O (89)
) * *
if yo4 <N B (90)
. 5/2
and ks = Cv" /QO ...................................... (91)
3/2
K = T T
6 CSPW /QO (92)
— /, il @
C = 4,28 ¢ tan E R T T PR (93)
v v 2
= 5.36 ¢ L = Q /[n(l-n )]3/2 ............... (94)
sp Sp sp o Sp

Substitution of Eq. 86 into the C+ Eq. 33 yields

* 2 * N L) *
3/2 (cly 47eCY gty g )(Fay d+Fd)

Ko(y™ "2 ok (8 ot 32,
-1 -1y
52 g7 67 a7 sp (c.-c.)
1 72
= T, (95)
h F * +F (¢ ¢
= e — b -t
where g v, Fsyl 6(t GTE ) e (96)
*
Eq. 95 may be solved for v g by Newton's technique with
* * -
dl = v T (97

Then, v 4 is computed from Eq. 86 and the reservoir release discharge

%
Q 4 is computed from the following
* ( * 5 % N * 2)
* Va1 qme%Y 4TV 4
Q = I d e (98)

d (Cl—cz)
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Optimization of Retarding Layer Location. - When a dam does not
have an erosion retarding layer, the maximum possible reservoir release
* * .
Q due to a breached dam occurs at n which may be at any eleva-
dmp vmp
tion within the dam; this elevation depends upcn the magnitude of the
reservoir surface area, bottom slope, the failure rate A and Cv.

* s .

When Q dmp occurs, the two factors controlling the rate of discharge

* *
through the breach, namely the head (y Pl V) on the breach and the flow
area of the breach must assume their maximum simultaneous values.

-~ Pl 1 * .
Thereafter and until practically all of the storage above y — releas-
ed, the reservoir surface level 74 decreases since the reservoir out-

* . . » v
flow Q q exceeds the reservoir inflow Qu

*
The optimum elevation n of the retarding layer is defined

1t0p

herein as that elevation which minimizes the maximum reservoir outflow
* » s . 3 .
Q qm* Thus, by optimally positioning the retarding layer, a maximum
*

reduction in Q dmp is achieved. Such a reduction, denoted as QR, is

defined as a percentage reduction, i.e.

* *
(Q -Q ., 100
r=-—dmR__dm e . (99)
Q dmp
*
An iterative procedure is utilized to determine n 1t0p within an

*
acceptable accuracy. Initially, the breach is simulated with n

1t
*
equal to zero, i.e. the dam does not have a retarding layer; and Q dmp
is determined. Then, the breach is simulated with the retarding layer
. *
positioned at n which is defined as
1t,
k+1
* * + & * (100)
n =n n i e e e
ltk+l ltk 1t
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where the k subscript denotes the number of iterations using an

* * *
incremental increase of & and n = . The simulation of
Ty "lt " vmp )
1 *
the breach, with the retarding layer positioned at n 1t , 1s continued
% % k+1

*
until n <n since all subsequent Q must be less than that
v vmp d
* *

occurring when n . has reached n — When the dam has a retarding

* * *
. o ; i
layer that is positioned above the n v at which Q dmp occurred, Q dm
*
will be less than Q dmp gsince the retarding layer allows the water

level in the reservoir to recede while the area of the breach remains
*

*
relatively constant. Thus, G 4m will occur at some n v which 1s greater

h *
than N vp *

*
The reduction in Q dmp’ denoted as QR, is a funciton of the posi-

*
tion n of the retarding layer. A typical relationship between QR and

1t

*

*
n 1t is shown in Fig. 5. The function, QR = QR(n lt), was investigated

for a variety of reservoirs parameters (L, 7, QO, A, etc.) and was
found to contain only one maximum value. Thus, the difficulties en-
countered when a functicn contains more than one maximum (peak) is
avoided in the iterative search for n 1e0p

*
Using an incremental increase an ; QR, is computed for each
lt k

n position of the retarding layer until QRk is greater than QR .
ltk +1 k
When this occurs, as noted in Fig. 5, QRmaX and the corresponding
* 1 f * 1 h * T
T exists for a value o ess than n . hen ¢ and
" 1cop 2 " le it Rt
(o

are computed, and the final location of QR is easily obtained
QRk+3 P ’ - R ax :

graphically by extending smooth curves through all the computed points
. %
(QR, M ).

k

Modd(fications to Meded. - Modifications may readily be made to the

above numerical simulation model to accommodate reservoir geometries,



FIGURE

5. TYPICAL VARIATION OF THE PERCENT REDUCTION (QR) IN
THE MAXIMUM POSSIBLE RESERVOIR RELEASE WITH THE

*
LOCATION (n lt) OF THE EROSION RETARDING LAYER
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bottom slopes, breach geometries, upstream and downstream boundary

conditions, and breach dynamics which differ from those treated herein.
Rectangular or triangular reservoir cross sections may be simulated

by letting z=0 or z=L/(2Tn), respectively. Other cross-sectional

geometries may be handled by properly defining A, D, and R. The

reservoir bottom slope SO may be defined other than by Eq. 4 and thus

be independent of n and L. Breach geometries, other than a V-shape

may be simulated by defining the cross;sectional area of the breach as

*
a function of n

V.

A principal spillway and/or a different type of emergency spill-
way may be incorporated into the downstream boundary condition by
defining their respective stage-discharge relationships and elevations.
The discharge coefficients Csp and CV of the spillway and V-breach may
be expressed as functions of yd, nsp’ and or nv rather than assumed
to be constants.

The upstream boundary condition may be changed to a stage or dis-
charge hydrograph by specifying the relationship between the upstream
stage or discharge with time.

The initiation of the breach may be defined so as to occur when

* *
the depth vy at the downstream boundary exceeds n by a specified

d
amount. The failure rate A may be described by various mathematical

functions other than Egs. 5 and 6.
EXPERIMENTAL SIMULATION MODEL

An experimental simulation model was developed to check the accur-

acy o the numerical model. A vertical dam, consisting of two adjacent,



[¥e]
o~

metal plates, was installed near the midpoint of a 40 ft, long by

2 ft. wide Plexiglas flume. The thin metal plates were shaped such
that a V-opening was formed at the centerline of the dam when the plates
were moved in opposite horizontal directions parallel to the flume

cross section. The ¢ angle of the V-opening (breach) remained constant
throughout its formation and gradual enlargement. A magnetic clutch
provided an instantaneous application of a variable speed drive-unit

to a cable-pulley system which pulled the metal plates apart. This
system permitted the V-breach to be formed at any desired rate - from
0.0 - 0.15 fps.

The simulated reservoir formed by the two-dimensional metal dam
was of rectangular cross section having a depth Y4 of 1.704 ft. at the
dam. A steady inflow QO was introduced at the upstream end of the re-
servoir and the same quantity was released from the reservoir through
a small V-opening at the top of the dam. This outflow simulated the
steady spillway discharge assumed to occur prior to an over-topping
failure. The V-opening was enlarged at a known rate A; this simulated
the formation of a gradual V-shaped breach. A timed-pause in the forma-
tion of the V-breach simulated the effect of an erosion retarding lavyer.

The discharge coefficient Cv of the V-breach was determined for
humerous steady flows at various settings of the metal plates .so as to
provide steady state discharge coefficients which spanned the entire
range of possible V-openings (ﬂv) and heads (yd-hv) on the V-breach.

The discharge coefficient was found to vary with both ﬁv and Vy- This

variation was exprossed in the form

Co=K  (—Dc2 o e (10D
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N varied from 0.001 to

“~

where K varied from 1.580 to 1.634 and KL
c .

1

5

0.098; both are functions of (yd—nv) and -
Timers and staff gauges, positioned at stations 1.00 and 10.00 ft.
upstream from the dam, were continuocusly monitored via movie cameras.
This provided stage hydrographs at the selected stations. Total out-
flow Qt from the reservoir was determined for a specified duration of

time te after the time to at which movement of the metal plates was

initiated. Thus,

NUMERICAL RESULTS

Comparncson With Experumental Resudts. - The numerical simulation
model provides results which are in satisfactory agreement with the
experimental model. A typical stage hydrograph for station 1.00 is
shown in Fig. 6 aleng with the stage as computed by the numerical model.
The percent standard deviation Cyd between the experimental and numeri-
cal yd is 1.17%Z, and for all experimental runs, jyd is 0.83%7. The
computed outlet discharge hydrograph associated with the stage hydro-
graph is also shown in Fig. 6. Total outflow, as computed by the

numerical model, 1s determined by numerically integrating the dis-

charge nydrograph. The percent standard deviation CQt between the ex-

’

perimental and numerical total outflows 1is 5.17 for all experimental
runs. Additional experimental-numerical stage and discharge hydrographs

for this study are presented in reference (12).
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FIGURE 6.

STAGE AND DISCHARGE HYDROGRAPHS OF EXPERIMENTAL

RUN NO. 5
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Optunad Lecation and Reduction i Jutflow. - Upon

L

Retarding Layenr:
applying the numerical simulation model to a range of reservoir sizes,

dam heights, initial flowrates, and dam failure rates, prediction curves

*

are obtained for the dimensionless optimal elevation n 1t0p of the
4

erosion retarding laver and the extent of its reduction QRmax in the

reservoir outflow. The results are functions of the parameters used
herein to describe the transient hydraulics associated with the gradual

V-breach of an earthfill dam. These parameters consist of the follow-

ing: geometric parameters (L, Kl’ T, T, TSD, and ﬁTd); fydraulic para-

meters (Q , n, C\); and dynamic parameters (} and K.).
) / A

The values of and QRmax are expressed as functions of the

%

“ 1t0Op
\* ~ . - ~

dimensionless failure rate * , as defined by £q. 19, and for specific

*

values of L, T, A , n, and K.. The prediction curves for n and
c A 1t0p

. 3 Hc' 1t > - *

QR are applicable for the "fixed parameters', K =1.2, z=2, n

max 1 0.95,

sp=

n ld=0.02, n=0.03 and CV=2.2. The sensitivity of the prediction curves

to variations in these fixed parameters is examined in a following

section.
s . - - * -
Prediction curves for 7 1t0p and QRmax are shown in Figures 7-12
for specific values of L, T, K, and » . The 7ollowing cxample 1illus-

L

trates the use of the prediction curves:

When Q =2,000 cfs, L=10,000 ft, t=10, ~=100 ft,
0
3 ) )] * * p
= 3 K = o= = 8l ={ g - = ‘
AC 0.01 fps, hk 100, hl 1.20, z=2., n sp 0.95, - 1d 0.02,
. *
n=0.03, and C =2.2, the optimum elevation - , of an erosion
v LCOP
retarding layer and the corresponding reduction QR*ax in the

maximum possible reservoir release may be obtained from Fig. 8.

* L * :
First, % 1is computed from Eg. 19, i.e. & =~££QQ%%%5_Q£)
DIOOOO - 2(100)} = 40. Then a line is extended vertically from

10
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FIGURE 7. RELATIONSHIP BETWEEN QR AND n
maX 1t0p
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*
. N
FIGURE 8. RELATIONSHIP BETWEEN QR AND n 1t0p

» T=10, RC=O.OI fps

FOR VARIOQUS

*
VALUES OF X AND L=10,000 ft.




42

o M=50 ft.
e M={00 ft.

50.}

40.}

30.f

1S.

FIGURE 8.

1000.



*
FIGURE 9. RELATIONSHIP BETWEEN QR AND n FOR VARIOUS
max 1t0p

*
VALUES OF A AND L=10, 000 fr., =10, XC=O.OOS fps
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FIGURE 10. RELATIONSHIP BETWEEN QR AND n FOR VARIOQOUS
max 1t0p
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FIGURE 12. RELATIONSHIP BETWEEN QR AND n, FOR VARIOUS
max 1t0p

*
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*
the abscissa at A =40 to intersect the curves pert

aining to

Kk=lOO and n=100 ft. as shown in Fig. 8. Finally, the values

* . 3 . 1 s
of n 1t0p and QRmax are obtained by extending lines norizontally

*
until they intersect the appropriate ordinate axis, and n 1t0p

and QRmax are read as 0.463 and 45.8%, respectively,

*

Upon examining Figs. 7-12, it is evident that n 1t0p significantly

varies directly with n and K} and inversely with L and }c' Also, in

* %
all except Fig. 7, n 1t0p varies directly with

If the failure rate AC is verv small and/or L is small, say L=
2000 ft., the reserveir depth as determined by the numerical model

recedes at an increasing rate as the V-breach forms. Under this condi-

*
tion, the maximum possible reservoir release Q 4 occurs when the rate

) *

o L.e. Q dmp

occurs considerably before the breach achieves its maximum size.
*

n 1t0p may assume values in the range of 0.60 to 0.75.

at which the depth is receding exceeds the failure rate i

Hence

b

Under this same

condition of small values of Ac and/or L, the elevation of the erosion

retarding laver is critical since it is possible for the layer, if in-

o * * *
correctly positioned above n , to cause Q Lo exceed o .
vmp dm dmp

In Figs. 7-12, QRmax assumes values in the range of 10 to 65%.
This indicates that significant reductions in the maximum reservoir

release from graduall breached dams may be achieved by the presence of
g y ) Yy P

an erosion retarding layer which is optimally located. The extent of

the reduction'QRwaX is primarily related directly to the resistance of
Lo

the layer to erosicn, i.e. K., and to 1

A
) ) *
Prediction curves for n and QR are shown in Figs. 13 and
1tOp max

14 for specitic vialues of L, t, n, K,, A, and ydm' In these, " is
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FIGURE 13. RELATIONSHIP BETWEEN QR AND n
max 1t0p

*
FOR VARIOUS VALUES OF A AND L=10,000 ft., 7=10,
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FIGURE 14. RELATIONSHIP BETWEEN QR AND n
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56
assumed to be an exponential failure rate as described by Eq. 7. The
prediction curves in Figs. 13 and 14 are similar to those in Figs.

8, respectively. The exponential failure rate produces values of
* . . a, N
n and QR which are approximately 10% greater than those
1t0p max

computed for a constant failure rate. In Figs. 13 and 14, QRmax assumes
values in the range of 10 to 75%.
Sens{tivity to Vardlations Ln Fixed Patameters. - The sensitivity

*
of t n and QR values, as presented in Fig. 8, to variation
he 7 1t0p Q max ’ P g ’ rons

in the values of the "fixed parameters' is shown in Table 1. The

{

variations in the values of the fixed parameters span the practical
range of each. The sensitivity is determined as an average percentage
- * » . oo
change in the values of n and QR as determined with the fixed
1t0p max
parameters having the values designated in the preceding section.

*
Variations in Kl’ n sp’ z and n result in changes of about
*
10% or less in 7 and QR . Variations in T and C_ produce
1t0p max v

*
more significant changes in n 1£0p of approximately 12 to 30%. Also,

as noted in Table 1, variations in T and CV produce changes in (R
max
- - B . . : * -
Or approximately 15 to 38%. Variations in - 1d result in significant
L
*

changes in r | and QR when K, = 100 and n = 50 ft; however,
1t0p max A

the changes are not significant when K. = 300 and 1 = 50 or 100 ir.
/ \
Computaticn Time. - The maximum computation time C. in seconds,
which is required for the numerical model to determine the transient

hydraulics, for a particular set of geometric, hvdraulic and dvnamic

parameters, mav be approximated by the following

7 and
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*
TABLE 1. SENSITIVITY OF n AND QR TO VARIATIONS IN
1t0p max

Kl, n 14° g sp’ z, T, CV AND n FOR L=10,000 e,

=10, AC=O.OL fps

~Fixeciiw,’\/'alue "ffﬁfja;~r‘ﬁg;é. Perceﬁzage ! Avg. Pefﬁentéégiy
E - *
VariableJ ,mvfrffffon‘jfwim}EQE“A Variation in QRmax
; n=50 ft. "= 100 fr. T #=50 fr. =100 fc.
(1) ¢ N (O TN ). e
1.1 100 -12.4 + 9.1 | +14.0 + 8.5
% 1.3 100 + 1.3 + 0.2 - 2.1 + 8.3
°1 1.1 © 500 + 1.9 +12.9 +10.0 + 2.5
1.3 500 + 5.3 - 7.5 - 2.6 + 2.3
L 0.0l 100 ~28.8 - 1.9 -10.7 - 42
K ; 0.05 100 +18.5 + 8.0 S+ +17.3
1d 0.0l 500, - 6.7 - 1.5 .+ 1.8 + 5.0
| 0.05 500+ 2.6 + 0.9 L+ 6.0 +15.6
1 0.900 100 | - 6.5 +0.5 41 + 4.2
* 0.975 100 -14.0 + 3.6 41405 + 6.3
Tsp 0.900 500 +18.0 -10.5 L +1L5 £ 3
0.975 500  + 2.7 +18.. b+ 2.9 + 3.5
0.0 100 -11.5 - 5.4 I - 5.8 +13.6
Z 4.0 100 - 5.8 +18.0 P+ 1.6 + 5.2
0.0 500 - 1.2 - 2.8 L= 7.2 + 9.8
4.0 500 + 4.6 + 0.5 C+13.3 - 2.6
0.02 100 - 7.3 + 1.8 S+ 3 + 6.1
R 0.06 100 - 5.7 + 1.9 C+18.0 + 204
0.02 500 + 1.0 + 1] + 4.1 + 3.0
0.06 500 + 1.4 + 4.0 +11.9 +5.3
i} ' 5.0 100 -20.0 -16.6 -17.0 +37.6
L 5.0 500 +17.2 - 7.0 —i4.4 +38.1
c | 1.0 100 ~25.5 -24.0 -37.3 +21.7
M | 1.0 500 5.5 -36.3 Co-12.2 +13.3
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and Cp is the constant compile time, Kop is a multiplier which reflects
the additional computation time required when the retarding layer
optimization procedure is utilized, and th is a constant. When the
computations are performed on an IBM/360 computer, Cp=94 seconds and
th=0.020 seconds. If the retarding layer elevation is not optimized,
Kop=l; otherwise, Kop varies from 4 to 10 depending upon the magiitude

*

*
of ( 1t0p -0 vmp>'

SUMMARY AND CONCLUSIONS

A conceptual method to reduce flood wave peaks due to over-topping
failures of small homogeneous earthfill dams has been introduced. A
numerical simulation model based upon a characteristic numerical solu-
tion of the St. Venant unsteady flow equations is presented for pre-
dicting the transient reservoir flow produced by the gradual breach
of an earthfill dam.

The extent of reduction In the reservoir cutflow Irom a breached
dam due to the presence of a hypothetical erosion retarding layer is
presented, along with the optimal elevation of the retarding laver, for
a wide range of pertinent geowmetric, hydraulic, and dynamic parameters.
The extent of reduction QRmax in the maximum outflow is primarily
related directly to the ratio of the failure rate of the earthfill dam
to the failure rate of the erosion retarding laver, i.e. Kk,and to the

*
dimensionless failure rate * which is defined by Eq. 19. This



reduction can be as significant as 75%. The dimensionless optimal

*
elevation n , which minimizes the maximum reservoir outflow due

1t0p
to the breach, is related directly to the height n of the dam, KX’

* . - , :
and A and inversely to the length L of the prismatic reservoir and to
the failure rate A. The exponential failure rate produces values of

* d QR hich i ly 10% h h
an which are approximate = greater than those compute
n 1t0p Q max PP Y & P d
when the failure rate is constant.

Some sensitivity tests of the numerical model indicate that varia-
tions in the ratio of the width to the length of the prismatic reservoir,
i.e. T, and the coefficient of discharge Cv of the V-breach significant-
ly effect the extent of reduction in outflow achieved by a retarding
layer, as well as, its optimal elevation. Variations in the dimension-

* Bl . 0
less thickness n ld of the retarding layer produce some significant

*

i é K
changes in n 1t0p and QRmax as n and ; assume smaller values. However,

variations in the ratio of the total length L' of the reservoir to the
length L of the prismatic portion of the reservoir, i.e. Kl’ the di-

: . * o N . ~
mensionless elevation n sp of the spillway crest, the side slope z of
the trapezoidal reservoir cross section, and the Manning roughness

*

coefficient n produce relatively small changes in 0 1top and QRma

<
When the prismatic reservoir length is small, say L=2000 ft., the

reservoir storage is depleted at a significantly increasing rate as

the breach forms. Hence, for failure rates of 0.0l fps and smaller, the

reservoir.water surface may eventually recede at a rate which is faster

than that at which the breach forms. Thus, the elevation of the tip of

the V-breach may be in the vicinity of n/2 when the maximum outflow is

attained. The optimal elevation of the retarding layer is located
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above this; and its location is critical since an incorrect position-
ing can cause the outflow to exceed the maximum that would occur when
no erosion retarding layer is present. When this condition exists
and n=100 ft., the reduction in the maximum outflow is relatively small
as compared to that achieved by a retarding layer in an earthfill dam of
a reservoir with a larger surface area.

The numerical model, as presented herein, may be used in its
present form or modified, as required, to investigate the transient
hydraulics of prismatic reservoirs subjected to unsteady flow intro-

duced at either or both extremities of the reservoir.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:

A = Area of channel (reservoir) cross section
C, .»C ,C_ = Constants used in evaluating computation time, C ,
ke’ "p’Tt t
in Eq. 103
csp’cv = Constants defined by Eqs. 94, and 93, respectively

C+,C- = Positive and Negative characteristics, respectively



c _,cC
sp’ v
€122 C5

D

d,do,k,1l,p,u,uo

Fd,Fg,Fu

F_,F, ,F_,F
&4 b

Fl’FZ’ 3’ 6

6,6,

5

dm

Qdmp
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= Discharge coefficients for broad crested rectangu-
lar and V-shaped weirs, respectively

= Constants defined by Eq. 12
= Hydraulic mean depth

* %
= Subscripts denoting intersection points in the x -t

plane
= Constants defined by Egs. 96, 24 and 66, respectively
= Constants defined by Egs. 55-60, respectively
= Constants defined by Egs. 25 and 26, respectively

= Acceleration due to gravity

= Subscripts denoting location along an elementary

channel
= Experimental constants
= Constants defined by Egs. 8, 5 and 38 respectively
= Constant used in evaluating Ct

= Ratio of the failure rate of earthfill dam to the
failure rate of the erosion retarding layer

= Constants defined by Egs. 15-18, 91 and 92,

Ly
= Length of prismatic section of reservoir
= Length for determining So’ and defined by Eg. 5
= Length of emergency spillway crest
= Number of stations along reservoir
= Manning's roughness coefficient
= Wetter perimeter of flow cross section
= Initial steady flowrate in reservoir
= Flowrate at downstream boundary (reservoir outflow)

= Maxinum flowrate at downstream boundary

= Maximum possible flowrate at downstream boundary

respective-



Percentage reduction in Qdmp and defined by Eq. 99
Maximum value of QR

Total outflow from experimental reservoir from time
to to tf, and defined by Eq. 102
Hydraulic radius

Friction slope (slope of energy gradient) defined
by Eq. 3

Bottom slope of reservoir and defined by Eq. 4
Top width of free surface of channel (reservoir)
Time

Starting and ending times, respectively tor experi-
mental runs

Average velocity in channel (reservoir)
Average velocity at downstream boundary when t = 0
Distance along channel (reservoir)
Unknown variable in Newton Iteration Technique
Depth of flow in channel (reservoir)
Critical depth for steady flowrate QO
Depth of flow at downstream boundary
Normal depth for steady flowrate QO
Sequent depth of Yy
Side slope of reservoir cross section
Very small increment
Increment of channel (reservoir) length
*

Incremental increase in n 1t

Elevation of top of dam, with datum line at bottom
of dam

Elevation of bottom of erosion retarding layer

Thickness of erosion retarding layer
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Ny = Elevation of top of erosion retarding layer
"rop - Optimal elevation of top of erosion retarding
: layer
nsp = Elevation of emergency spillway crest
nv = Elevation of bottom of V-breach when t=td
n = Elevation of bottom of V-breach when t=t
vo do
€ = Angle of inclination of channel bottom with the
horizontal :
» = Failure rate of dam (rate of formation of the
V-breach)
KC = Constant failure rate during a specified period of
time or interval of elevation, nv
A = Estimated maximum failure rate when n_=n
m v vmp
vd = Percentage standard deviation of Y4
OQt = Percentage standard deviation of Qt

I = Parameter used in evaluating Ct and defined by Eq. 104
T = Ratio of initial top width T to reservoir length L

3 = Acute central angle of V-breach

) = Linear multiplier

* = Superscript denoting a dimensionless variable
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