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With spatially distributed hydrologic models the need arises for determining the channel cross section
shape for the entire stream network. In the absence of cross section data, assumed or parameterized cross
section shapes are often used. The effects of parameterized cross sections are evaluated in this study by
developing a modeling framework that externally couples a spatially distributed hydrologic model, HL-
RDHM, with a one-dimensional unsteady hydraulic model, HEC-RAS. The evaluation emphasizes the effects
of parameterized cross sections on simulated flows by focusing the analysis on the portion of the basin’s
main stream reach where detailed cross section data and observed streamflows (at both ends of the reach)
are available, and by developing and testing three cross section scenarios. The scenarios are designed to
increase sequentially, in a stepwise fashion, the complexity of the parameterized cross section, starting with
a single roughness parameter and channel power law cross section shape and then including additional
power law or roughness parameters. This is done stepwise to help distinguish the effects associated with
each parameterization, and decide the required level of cross section detail. The scenario simulations are
evaluated using split sampling, changes in measures of performance and hydrograph agreement, hypothe-
sis tests on Nash–Sutcliffe values, and overall predictive uncertainty. The coupling framework is applied to
the Blue and Illinois River basins, in Oklahoma, US. Overall, we found that in these basins the coupling tends
to improve predictions when dynamic wave routing and floodplain cross section geometry are considered
concurrently. For this scenario, we found that on average typical measures of model performance may be
improved and, based on a quantitative and qualitative assessment, uncertainty may be reduced. We also
found that dynamic wave routing does not tend to perform better than kinematic wave routing for the most
basic scenarios with a single power law cross section shape. Further, results indicate that the distributed
hydrologic model performance at the main outlet and at the upstream boundary of the hydraulic model,
and the relative contribution of lateral inflows, are key factors that need to be considered when deciding
the applicability of the coupled framework to other basins. In the future, to effectively use resources, it will
be beneficial to automate the coupling and accompany its application with a priori criteria for selecting
those basins where benefits are most likely.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In an effort to understand and improve distributed hydrologic
models, the Office of Hydrologic Development (OHD) of the Na-
tional Oceanic and Atmospheric Administration’s National Weath-
er Service (NOAA/NWS) led the Distributed Model Intercomparison
Project (DMIP 1) and is currently leading a second phase (DMIP 2)
(Reed et al., 2004; Smith et al., 2004b, 2009). Some goals of DMIP
include determining the level of model complexity needed to
achieve improved predictions while keeping the parameterization
costs low and identify areas in the overall modeling process to
ll rights reserved.
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focus improvement efforts. The experience with DMIP 1 and 2
has highlighted some of the complications that can arise when try-
ing to compare and evaluate hydrologic models (Butts et al., 2004;
Reed et al., 2004; Smith et al., 2009). Factors such as high dimen-
sionality, uncertainty (i.e. input, structural, parametric, and out-
put), and limited data availability for model evaluation, make the
identification of specific causes of model deficiency difficult (Reed
et al., 2004). This suggests the need for more targeted model
assessments and comparisons, where a distinct component of the
model is evaluated (Reed et al., 2004). In this study we follow this
suggestion through a more detailed examination of the routing
technique and parameterization used in the Hydrology Laboratory
Research Distributed Hydrologic Model (HL-RDHM). HL-RDHM is a
distributed hydrologic model developed for forecasting purposes
(Koren et al., 2003, 2004). The kinematic wave routing technique
implemented in HL-RDHM is common to several other distributed
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hydrologic models (e.g. see Table 1 in Reed et al., 2004). Therefore,
the conclusions from our analysis here are relevant to other models
as well.

With this in mind, and noting that the routing process plays an
important role in hydrologic forecasting (Fread, 1981, 1993;
Moreda et al., 2009), we are interested in examining ways in
which the routing process may be improved. Many times there
is concern that a simpler routing conceptualization may cause
substantial loss of predictive capability (Horritt and Bates, 2002;
Romanowicz and Beven, 2003; Cook and Merwade, 2009; Moreda
et al., 2009). Further, there are aspects of the routing process that
have received little attention but have, concurrently, gained a
more prominent role within a spatially distributed context (Orlan-
dini and Rosso, 1996, 1998; Koren et al., 2004). A good example of
the latter is the role played by the cross section geometry in the
routing of flows (Orlandini and Rosso, 1996, 1998; Koren et al.,
2004). Cross section data is generally lacking but still required
in a distributed context, the de facto alternative has been to use
parameterized cross section shapes (e.g. Fread and Lewis, 1986;
Orlandini and Rosso, 1996, 1998; Koren et al., 2004; Valiani and
Caleffi, 2009), and many times a simple analytical shape is as-
sumed. However, the effects of parameterized cross section shapes
on simulated flows have been studied little and indications are
that they can have an influential effect. For example, Orlandini
and Rosso (1998), in a relatively recent study, showed that param-
eterized cross sections with vertically varying widths based on
relationships of hydraulic geometry, as opposed to rectangular
shapes with constant width, can lead to considerable improve-
ment in flow simulations using a distributed model. Other studies
have examined directly the role of cross section shapes but not for
distributed hydrologic modeling (e.g. Keefer, 1976; Garbrecht,
1990; Myers, 1991; Ponce and Porras, 1995).

With this background, the aim of this study is to examine the
effects that parameterized cross section shapes and simplified
routing (i.e. kinematic wave routing instead of more general dy-
namic routing) have on simulated flows within the context of dis-
tributed hydrologic modeling. This study’s motivation stems from
the perception that using an approximate cross section shape
may have a sufficient influence on routed flows to reduce gains
from a more general routing method (Keefer, 1976; Myers,
1991; Ponce and Porras, 1995; Orlandini and Rosso, 1998). We
seek to test this hypothesis by performing various model-based
experiments while trying to emphasize conditions relevant to
the use of hydrologic and hydraulic models in NWS forecasting
operations.
Table 1
Summary of the average values of NS, Rmod, |DQp|/Qp,obs, and |DTp|/Tp,obs for the baseline sim
DW2, and DW3), in both the Blue and Illinois River basins. The results for the hypothesi
associated with each simulation are the number of individual storm events that agree with
Illinois, respectively.

Basin Simulation Calibration Validation

NS Rmod NS Rmo

Blue River KW 0.75 0.78 0.67 0.69
DW1 0.7 0.73 0.7 0.69
DW2 0.71 0.73 0.74 0.7
DW3 0.68 0.74 0.7 0.69
DW4 0.74 0.79 0.7 0.7

Illinois River KW 0.91 0.88 0.81 0.85
DW1 0.95 0.93 0.84 0.83
DW2 0.95 0.93 0.85 0.83
DW3 0.97 0.98 0.85 0.87
DW4 0.97 0.98 0.84 0.86

bNumber of individual storm events i that agree with Ha: NSi < NSi,DW4.
a Number of individual storm events i that agree with Ha: NSi > NSi,KW.
2. Background

Much of the stage and background for this investigation is set by
the results and data sets from DMIP 1 and 2 (Reed et al., 2004; Smith
et al., 2004b, 2009). We use the data available to DMIP 1 participants
and one of the participating models, HL-RDHM (Koren et al., 2004;
Smith et al., 2004b). Next, the study area and data sets used are
briefly described (see Smith et al. (2004b) for details).
2.1. Study area

The basins selected for this study are located on the Blue and
Illinois River (Fig. 1a shows their location). Hereafter these basins
are simply referred to as the Blue or Illinois River. Both basins
are part of DMIP 1 and 2 (Smith et al., 2004b, 2009). This has the
advantage that for these basins the quality of required data sets
(i.e. input forcings and streamflow observations) has been thor-
oughly inspected and the performance of HL-RDHM has been
tested beforehand (Koren et al., 2004; Reed et al., 2004; Smith
et al., 2004b; Zhang et al., 2004). With this, we can draw attention
to the modeling of the routing process and place less emphasis on
other aspects of distributed modeling.

The Blue River basin, located in Oklahoma (see Fig. 1a), has an
overall drainage area of approximately 1233 km2. The Illinois River
basin, located between the Oklahoma–Arkansas border (see
Fig. 1a), has a drainage area of approximately 2484 km2. We use
two streamflow gauges for each basin, an outlet gauge located at
the overall basin outlet and an interior gauge located further up-
stream from the outlet gauge (see Fig. 1b and c for the location
of the gauges in the Blue and Illinois River basins, respectively).
In the Blue River, the outlet gauge is near Blue (United States Geo-
logical Survey (USGS) gauge number 07332500), and the interior
upstream gauge is near Connerville (USGS gauge number
07332390). In the Illinois River, the gauge near Tahlequah is the
outlet gauge (USGS gauge number 07196500) while the interior
gauge is near Watts (USGS gauge number 07195500). The along-
stream distance between the two gauges in the Blue River is
approximately 84.5 km. The distance is shorter in the Illinois River,
approximately 71.2 km. However, the Blue River has more tribu-
tary streams (i.e. inflow locations) connecting to the main stream
reach. Hereafter, for clarity, the river section between the internal
and outlet gauge is referred to as the main stream reach. The
stream network connectivity is shown in Fig. 1b and c for the Blue
and Illinois River, respectively. The 4 km grid cell sizes in this
ulations (KW and DW4) and the three cross section parameterization scenarios (DW1,
s tests defined in (8) and (9) are also shown. For the hypothesis tests, the numbers
the alternative hypothesis where the total number of events is 11 and 23 for Blue and

|DQp|/Qp,obs |DTp|/Tp,obs Hypothesis test

d Test in (8)a Test in (9)b

0.30 0.16 – 6
0.32 0.15 4 3
0.30 0.17 5 2
0.30 0.19 5 3
0.30 0.14 6 –

0.10 0.066 – 17
0.14 0.081 9 13
0.14 0.078 9 13
0.09 0.052 17 10
0.11 0.028 17 –



Fig. 1. (a) Map illustrating the location of the Blue and Illinois River basins. Illustration of the basin boundary, stream network connectivity, location of streamflow gauges,
cell classification used in coupling, and routing reach for the (b) Blue and (c) Illinois River basins.
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application match the nominal size of the radar-based precipita-
tion products used in the modeling. This 4 km grid stream network
connectivity was derived from 30-m digital elevation model (DEM)
data following the method developed by Reed (2003) for NWS
applications.

The contributing drainage area between the two gauges in each
basin is approximately the same, 813 km2 for the Blue River and
839 km2 for the Illinois River. Nevertheless, relative to the overall
drainage area, the area contributing to lateral inflows along the
main stream reach is approximately 66% in the Blue River and
34% in the Illinois River. Thus, lateral inflows are expected to play
a larger role in the Blue River. The soil types in the Blue River are
comprised of clay, loam, sandy clay, and clay loam. In the Illinois
River the soil types are silty clay, silty clay loam, and silt loam.
Most of the land use in the Illinois River is pasture and forest, while
Blue is mostly agricultural. The mean annual rainfall and runoff
coefficient are approximately 1036 mm and 0.17, respectively, for
the Blue River, and 1157 mm and 0.26, respectively for the Illinois
River (Smith et al., 2004b). Additionally, Smith et al. (2004a) noted
that conditions in the Blue River, in contrast with other basins in
the same hydroclimatic region, are such that little basin response
filtering tends to occur and rainfall spatial variability is higher.

2.2. Data sets

We used mainly data sets available for DMIP 1 and 2 (the data
sets can be found at http://www.nws.noaa.gov/oh/hrl/hsmb/
hydrology/index.html). Smith et al. (2004b) describe these data
sets in detail. Here we only describe the data sets that were not
part of DMIP 1 and 2, either because they were unavailable at
the time or not used.

For the interior gauge in the Blue River at Connerville, we ob-
tained streamflow data from the USGS at the 1 h resolution for
the period between October 1, 2003, and December 31, 2007.
The detailed cross section data for the Blue River was derived from
field surveys, bridge plans, and pier scour studies (Smith et al.,
2004b). Additionally, we linearly interpolated cross sections in
the Blue River based on the interpolation method in HEC-RAS
(Brunner, 2008b) so that at least one detailed cross section fell
within every grid cell on the main stream reach. The grid cell struc-
ture for the Blue and Illinois River is shown in Fig. 1b and c, respec-
tively. For the Illinois River, the cross section data were derived
from USGS topographic maps at 100 = 20000 resolution (Smith
et al., 2004b). From the available data, the cross section spacing
for the Blue River is on average 3 km and for the Illinois River is
approximately 2 km. The cross section locations for the Blue and
Illinois are illustrated in Fig. 1b and c, respectively, in a schematic
diagram of the main stream reach.

3. Modeling framework

To carry out the proposed experiments, we externally coupled a
distributed hydrologic model, HL-RDHM, with a more general
hydraulic routing model, the Hydrologic Engineering Center’s River
Analysis System, HEC-RAS (Brunner, 2008a,b). The way this cou-
pling is done and the calibration strategy employed are described
below.

We chose HEC-RAS because it is readily available and it numer-
ically solves the complete 1-dimensional, shallow wave/St. Venant
equations (Brunner, 2008a,b), providing a more general routing
method than HL-RDHM. HL-RDHM solves numerically the kine-
matic wave approximation to the shallow wave/St. Venant equa-
tions (Koren et al., 2004). Both HL-RDHM and HEC-RAS employ a
similar weighted four-point implicit finite difference approxima-
tion in their numerical solution (Koren et al., 2004; Brunner,
2008a).

3.1. Coupling of HL-RDHM and HEC-RAS

For the coupling, the HL-RDHM grid representation of a basin is
classified into the following three types of grid cells: main channel,
contributing lateral inflow, and contributing upstream boundary
cells. Fig. 1b and c illustrates this cell classification scheme for
the Blue and Illinois River, respectively. The main channel cells
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are the grid cells that comprise the main stream in the connectivity
network. In the connectivity network the main stream is identified
as the cells having the largest drainage area when moving up-
stream from the overall basin outlet. The contributing lateral in-
flow cells consist of the sub-basins draining to the main channel
cells. The contributing upstream boundary cells are the sub-basin
cells draining to the most upstream boundary of the hydraulic
model.

The coupling between HL-RDHM and HEC-RAS is directional
and external, similar to the approach of Lian et al. (2007) which
proved to be successful at improving predictions but using a differ-
ent, semi-distributed, hydrologic model. The directionality comes
from neglecting potential feedbacks between the two models such
as backwater effects on tributaries and hyporheic exchanges along
the main stream. The coupling is external because the continuous
output from HL-RDHM is used as continuous input, i.e. lateral in-
flow, into HEC-RAS, while the two models remain independent
from each other. The lateral inflow cells for the Blue and Illinois
River are shown in Fig. 1b and c, respectively. Because of the rela-
tively large size of each grid cell (approximately 16 km2), the con-
tributions from surface and subsurface hillslope runoff within each
main channel cell are added to their associated inflow locations.
The main channel cells for Blue and Illinois are shown in Fig. 1b
and c, respectively. We preserve initially in HEC-RAS the channel
and cross section parameters used for routing in HL-RDHM, such
as the channel length, the roughness parameter, and the power
law cross section parameters (Koren et al., 2004). However, the
roughness and power law parameters are varied hereafter (in Sec-
tion 5) to quantify their effects on flows.

The coupled model routes the exact same flows as HL-RDHM
along the portion of the main stream shared by both models. For
the simplest comparison, when parametric cross-section geometry
from HL-RDHM is also used to build cross-sections in HEC-RAS, the
only major difference between the two models is the kinematic
versus dynamic wave solution.

3.2. Baseline simulation for HL-RDHM and the coupled model

HL-RDHM and the coupled HEC-RAS model with detailed cross
section data are both treated as baseline simulations and used for
comparisons in Sections 5 and 6. Hereafter, the baseline HL-RDHM
simulation is referred to as distributed hydrologic kinematic wave
simulation (KW), while the coupled HEC-RAS baseline simulation
is referred to as distributed hydrologic dynamic wave simulation
four (DW4). The number four after DW is used to distinguish the
coupled baseline simulation from other coupled simulations de-
scribed hereafter. DW4 has the distinctive characteristic that it
uses detailed cross section data to route flows. DW4 is treated as
a baseline simulation because it represents the most general and
detailed model structure implemented in this study. DW4 serves
as a potential upper limit when assessing predictive gains from dif-
ferent cross section scenarios. On the opposite end, KW is consid-
ered a baseline simulation because it represents the simplest
model structure used and serves as a potential lower limit.

3.3. Calibration of baseline simulations

HL-RDHM and HEC-RAS were calibrated separately based on
different objectives. Two HL-RDHM kinematic wave routing
parameters that influence the timing and the shape of hydrographs
were adjusted with constant multipliers across all model cells to
improve the overall fit of simulated and observed streamflows at
the main outlet. HEC-RAS accepted the calibrated inflows from
HL-RDHM at the model interface cells and HEC-RAS Gauckler–
Manning’s roughness coefficients in the main channel were cali-
brated to provide the best match with observed flow at the basin
outlet. Ultimately the coupled model is used to test several scenar-
ios but only with data from the validation period. The data used in
the calibration of HL-RDHM and HEC-RAS are not considered in the
analysis of results.

The data periods used for the calibration and validation of
HL-RHDM and HEC-RAS are summarized in Fig. 2. To warm-up
HL-RDHM, we used the first year prior to the start of the calibra-
tion period for the Blue River and the 6 months prior for the
Illinois River. To initialize HEC-RAS, a backwater steady state
approach together with the observed flow at the start of the
calibration period was used (Brunner, 2008b). In the HEC-RAS
model, the downstream boundary was moved further down-
stream to minimize the effects from assuming normal flow as
the downstream boundary condition (Singh et al., 1997). To cal-
ibrate HL-RDHM the automatic method of Kuzmin et al. (2008)
was used together with parameter information from previous
modeling studies (Reed et al., 2004). HEC-RAS was calibrated
manually by adjusting the local channel Gauckler–Manning’s
roughness parameters. To adjust the Gauckler–Manning’s rough-
ness parameters for HEC-RAS, the same scaling factor approach
used for distributed hydrologic parameters was implemented
(Koren et al., 2004).

The calibration performance of DW4 was assessed from the val-
ues of the Nash–Sutcliffe (NS) and modified correlation (Rmod) coef-
ficient (Nash and Sutcliffe, 1970; McCuen and Snyder, 1975), and
from visual evaluation. The NS and Rmod values found for the cali-
bration and validation of KW and DW4 are summarized in Table 1.

4. Parameterization of cross section shapes

Various parameterizations have been proposed to represent the
cross section shape (Henderson, 1966; Fread and Lewis, 1986; Gar-
brecht, 1990; Knight, 2006; Valiani and Caleffi, 2009). The power
law cross section shape remains popular in hydrologic modeling
because it has been shown to be applicable to a range of conditions
and requires few parameters (Henderson, 1966; Fread and Lewis,
1986; Garbrecht, 1990; Orlandini and Rosso, 1996, 1998; Koren
et al., 2004). The power law relationship is as follows:

B
Br
¼ H

Hr

� �b

; ð1Þ

where B [L] is the channel top width, Br [L] is a reference width, H [L]
is the channel depth, Hr [L] is a reference depth, and the exponent b
controls the shape of the cross section. The cross section shape is
rectangular for b = 0, parabolic for b = 0.5, triangular for b = 1, and
an expanding shape for b > 1 where the width of the section in-
creases non-linearly with depth. By letting a ¼ BrH

�b
r , the relation-

ship in (1) can be written as:

B ¼ aHb: ð2Þ

Integrating (2) over the interval 0 to H, and substituting back into
(2), results in:

B ¼ ½aðbþ 1Þb�1=ðbþ1ÞAb=ðbþ1Þ
: ð3Þ

A [L2] is the cross section area. To estimate a priori values of the
channel shape parameters a and b, the power law can be related
to the Gauckler–Manning equation as follows:

Q ¼
ffiffiffi
S
p

n
aðbþ 1Þb
h i�2=3ðbþ1Þ

Aðbþ5=3Þ=ðbþ1Þ
; ð4Þ

where S is the local channel slope and n is the channel roughness
parameter. The relationship (4) can also be written as:

Q ¼ QsA
m
; ð5Þ
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where

Q s ¼
ffiffi
S
p

n aðbþ 1Þb
h i�2=3ðbþ1Þ

; and

m ¼ ðbþ 5=3Þ=ðbþ 1Þ:
ð6Þ

Using (5) to express Eq. (4) is useful because it shows that a priori
cross section shape parameters can be estimated from flow and
cross sectional area measurement data when available. These data
are commonly measured by the US Geological Survey when build-
ing flow-stage rating curves for stream gauging stations. The previ-
ous relationships are applicable at a given channel section,
assuming the channel to be prismatic along this section. To estimate
a priori cross section parameters for other channel sections in the
basin’s stream network, a methodology based on basin geomor-
phology is developed in Koren et al. (2004).

A second power law cross section, similar to (2), may be used to
account for the floodplain shape as follows (Fread and Lewis, 1986;
Garbrecht, 1990; Singh, 1996):

B ¼ cðH � HbÞd þ Bb; ð7Þ

where c and d have the same meaning as a and b in (2), respectively,
but are only for the floodplain. Hb is the channel bankfull depth and
Bb is the channel width at Hb. (2) is used for H 6 Hb and (7) when
H > Hb. The relationships (1)–(7) are used to estimate parameterized
cross section shapes.
gray dot indicates the separation between the channel and floodplain), (c) different
power law cross section and roughness parameter for the channel and floodplain
sections, and (d) detailed cross section data from field survey. The cross sections (b),
(c), and (d) above have been offset by 10, 20, and 30, respectively, for clarity.
5. Application of the modeling framework

5.1. Simulation scenarios

Three scenarios are proposed. The scenarios are chosen keeping
in mind their applicability in a distributed hydrologic modeling con-
text. The scenarios are designed to successively increase, in a step-
wise fashion, the complexity of the parameterized cross sections
by incorporating additional cross section power law or roughness
parameters. The succession of cross section detail is illustrated in
Fig. 3. The local stepwise approach to model structural evaluation ta-
ken for this study is appropriate because we are only focusing on the
routing process. Nevertheless, there are generalized methods avail-
able to explore and identify model structural deficiencies globally
(Lin and Beck, 2007; Reichert and Mieleitner, 2009). These methods
will be more appropriate when the entire model structure is being
examined and the coupling is not external.

Fig. 3a illustrates the cross section shape used for the first sce-
nario. This scenario is referred to as DW1. In DW1, we start with
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the same power law cross section shape and single roughness
parameter used in the baseline HL-RDHM simulation (KW). Hence,
the only difference with respect to KW is the use of dynamic wave
routing, as opposed to the kinematic wave. The second scenario
(referred to as DW2) uses the same shape as the previous scenario
but changes the roughness value for the floodplain part of the cross
section. We recognize that the previous is a simplified and often
practical way of dealing with variability in the roughness value.
However, a more general representation is possible for example
as done in Orlandini (2002) and Camporese et al. (2010). Fig. 3b
illustrates the cross section parameterization used in DW2. The
third scenario (referred to as DW3) implements a power law flood-
plain shape and assumes different values for the channel and
floodplain roughness. The cross section shape for this last scenario
is illustrated in Fig. 3c. Table 2 summarizes the differences be-
tween the scenarios, including the two baseline simulations.

The three scenarios (DW1, DW2, and DW3) have in common the
following characteristics: the only aspect of the coupled model
changed in each scenario is the cross section parameterization
(all other parameters and conditions remain the same), observed
streamflows are used as the upstream boundary condition to
emphasize changes along the portion of the main stream with de-
tailed cross section data; dynamic wave routing is used in all the
scenarios; the roughness parameters are re-calibrated for each sce-
nario based on the approach of Section 3.2; and the analysis of re-
sults is focused on a selected set of individual storm events from
the validation period.
5.2. Evaluation of simulations

For the evaluation of results, we select individual storm events
to retain more information about the changes caused by each sce-
nario. In total, we use 11 and 23 storm events for the Blue and Illi-
nois River, respectively. The events are selected to represent
different flow conditions (e.g. low and high flows), have different
storm hydrograph duration, and come from different years. The
lesser number of events selected for the Blue River is due to having
a shorter record of observations and a considerably larger number
of missing records. The events are all selected from the validation
periods defined earlier in Section 3.3.

For the evaluation we employ the following four measures of
performance and hydrograph agreement: NS, Rmod, |DQp|/Qp,obs,
and |DTp|/Tp,obs. NS and Rmod were defined earlier. The measure
DQp/Qp,obs is the relative difference between the observed and sim-
ulated peak flow. DTp/Tp,obs is the relative difference in the time to
peak. The observed peak flow (Qp,obs) and the observed time to peak
(Tp,obs) are used as the normalizing quantities. DQp denotes the dif-
ference between the simulated and observed peak flow, and DTp

the difference between the simulated and observed time to peak.
The measures DQp/Qp,obs and DTp/Tp,obs were chosen to allow con-
sideration of multiple-criteria and because these measures are val-
ued quantities in river forecasting (Fread, 1993). We will also use
the percent difference in the average validation value of a measure
between two simulations to quantify predictive gains or losses.
Table 2
Description of the different cross section parameterization scenarios, including the HL-RD

Simulation Routing method Cross sect

KWa Kinematic wave Single pow
DW1 Dynamic wave Single pow
DW2 Dynamic wave Single pow
DW3 Dynamic wave Different
DW4b Dynamic wave Detailed c

a Baseline simulation obtained with HL-RDHM.
b Baseline simulation obtained by coupling HL-RDHM and HEC-RAS.
To further assess the degree of predictive changes and because
NS values vary from storm to storm, we employ hypothesis testing
(McCuen et al., 2006). Using hypothesis testing is analogous, in
some respect, to the inclusion process followed in stepwise regres-
sion analysis to choose predictors. The objective is in this case to
test, after a new cross section parameterization or scenario is tried,
if changes caused in the value of NS by the new scenario can be
considered statistically significant relative to a baseline scenario.

Specifically, the test is as follows (McCuen et al., 2006):

Ho : NSi ¼ NSi;KW

Ha : NSi > NSi;KW
ð8Þ

where Ho and Ha are the null and alternative hypothesis, respec-
tively. The subscript i indicates the test is applied to values obtained
for the ith storm event. NSi is the value from the current simulation,
and NSi,KW is the value from the baseline HL-RDHM simulation
(KW). The hypothesis tested in (8) is whether the NS value, for a gi-
ven storm event i in the current simulation, can be considered the
same or significantly different to the NS value from KW for event
i. In (8), KW is used because this baseline simulation represents
the model structure that we are seeking to improve. This evaluation
strategy may be interpreted as reflecting a so-called top-down ap-
proach because the performance of the least detailed model struc-
ture is used to assess potential predictive gains from a more
detailed one (Sivapalan et al., 2003). The test is only performed on
NS values because NS and Rmod are related (McCuen et al., 2006).
We selected a 10% level of significance for the hypothesis test.
The exact definition of the test and critical statistic required by
(8) are given in McCuen et al. (2006).

On the other hand, to ascertain if there is potential for achieving
improvements from increasing the cross section complexity, we
perform the following test (McCuen et al., 2006):

Ho : NSi ¼ NSi;DW4

Ha : NSi < NSi;DW4
ð9Þ

The terms in (9) are the same as in (8), only the alternative hypoth-
esis is changed. (9) may be representative of a so-called bottom-up
approach in the sense that the most detailed model structure is
used as reference (DW4) and compared against simulations with
a simpler model structure (Sivapalan et al., 2003).

5.3. Comparison of baseline simulations

We compare first the baseline simulations (i.e. KW and DW4) to
assess the ability of the coupled framework to improve predictions.
Fig. 4 shows the values of these four evaluation measures for the
baseline simulations and the selected storm events in the Blue Riv-
er. In Fig. 4a and b, despite the observed variability, 8 out of 11
storm events have larger (better) NS and Rmod values, respectively,
for the coupled baseline simulation.

The average values of the four measures shown in Fig. 4 are
summarized in Table 1. The average values in Table 1 show that
for the Blue River predictive improvement is possible when the
HM (KW) and coupled (DW4) baseline simulations.

ion parameterization

er law cross section and single roughness coefficient
er law cross section and single roughness coefficient
er law cross section and different channel and floodplain roughness coefficient

power law cross section and roughness coefficient for channel and floodplain
ross section with different roughness coefficient for channel and floodplain
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coupled baseline simulation (DW4) is compared against the HL-
RDHM baseline simulation (KW). For example, the NS and Rmod in-
creased by approximately 4% and 1.4%, respectively, while |DQp|/
Qp,obs and |DTp|/Tp,obs decreased by roughly 1.3% and 11%, respec-
tively, in DW4. Hence, for the Blue River, predictive gains are ob-
served in the four measures with DW4.

Similarly for the Illinois River, when the two baseline simula-
tions are compared, predictive gains are observed. For example,
in Fig. 5a and b, this is apparent for the NS and Rmod values, respec-
tively, associated with the storm events having the largest normal-
ized Qp,obs value, say larger than about 0.75. These NS and Rmod
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point in the figures represents a different historical event simulation.
values tend to be larger for DW4. Furthermore, looking at the aver-
age values in Table 1, from all the storm events considered in the
Illinois River, we reach the same conclusion as in Blue based on
3 of the 4 measures. The average NS and Rmod values increase by
approximately 3.5% and 1.2%, respectively, with DW4. While
|DQp|/Qp,obs actually increases by about 9.6% but |DTp|/Tp,obs im-
proves by 59%.

From applying the hypothesis test in (8) to the Blue and Illinois
River, we found that 6 out of 11 and 17 out of 23 storm events,
respectively, agree with the alternative hypothesis. Notice that
the test in (8) is the same as the test in (9) for the baseline
Normalized Qp,obs

R
m

od

 (b)

0 0.25 0.5 0.75 1.0
0

0.25

0.5

0.75

1.0

Tp,obs (hours)

ΔT
p/T

p,
ob

s

 (d)

0 100 200 300 400
−0.3

−0.15

0

0.15

0.3

baseline simulations in the Illinois River basin. The horizontal axis in (a) and (b)
a given storm event by the maximum value of Qp,obs from all storm events. Each data
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simulations. In this case, the results of test (8) indicate that in more
than half the events in the Blue and Illinois River, the NS value ob-
tained for DW4 is significantly greater than the value for KW, sug-
gesting further that in these two basins gains in predictive
capability from the coupled framework are possible. Table 1 sum-
marizes the results obtained for the hypothesis test in (8).

Importantly, the comparison just performed for the Blue and
Illinois River, between the two baseline simulations, shows that
the coupled framework is able to improve predictions. We will take
in the next sections a more detailed view of this with the aim of
understanding further the effects of cross section geometry com-
plexity on simulation results. In doing so, we consider the statisti-
cal significance of these improvements, which appear relatively
small based on average statistics (with the exception of the peak
time improvement for the Illinois River). We also consider the
magnitude of simulations improvements in the context of overall
simulation uncertainty.
5.4. Effect of simplified routing

In this scenario (DW1) the goal is to assess the effects on pre-
dictions of simplified routing (i.e. from using kinematic instead of
dynamic wave routing) assuming a power law cross section
shape. By only looking at the model structure, the routing process
in HL-RDHM can be thought to consist of two main simplifica-
tions: the kinematic wave approximation and the parameterized
cross section shape (Koren et al., 2004). Both of these simplifica-
tions will cause some loss of predictive capability (Henderson,
1966; Fread, 1993; Butts et al., 2004). This first scenario will help
distinguish the likely loss in predictive capability due to simpli-
fied routing.

For the simulation performed in this scenario, the average NS
and Rmod validation values obtained for the Blue River are 0.7
and 0.69 (Table 1), respectively. The average values for the Illinois
River are relatively greater (NS = 0.84 and Rmod = 0.83, Table 1). As
expected from the lower average NS and Rmod values for the Blue
River, its average |DQp|/Qp,obs value is larger (0.32) than the aver-
age for the Illinois River (0.14). Similarly for |DTp|/Tp,obs, the Blue
River has again a larger average value (0.15) than the Illinois River
(0.081). This indicates that both the magnitude and timing of
peak flows are in this case better estimated for storm events in
the Illinois River than in the Blue River. Relative to the baseline
HL-RDHM simulation (KW), the percent difference in the average
NS validation values for the Blue River is 4.5% while there is no
difference between the average Rmod values. Hence, in terms of
Rmod alone, there are no gains from implementing dynamic wave
routing in the Blue River, but the opposite is reflected in NS. For
the Illinois River, the percent difference is 3.7% and �2.4% for
NS and Rmod, respectively.

From applying the hypothesis test in (8) to the Blue and Illinois
River, we found that 4 out of 11 and 9 out of 23 storm events (see
Table 1), respectively, agree with the alternative hypothesis. Thus
for the majority of events in the Blue and Illinois River, the differ-
ences in the value of NS between KW and DW1 can not be distin-
guished with respect to sampling variability, suggesting that in
these two basins gains in predictive capability from dynamic wave
routing alone may be somewhat unlikely.

For the Blue River, the test in (9) resulted in 3 out of 11 storm
events with NS values less than NSDW4, while in the Illinois River
the result is 13 out of 23 (see Table 1). Based on this, it appears that
further improvement may be realized for the Illinois River because
there are many cases where the performance is less than DW4. In
the Blue River the opposite seems the case, gains from a more de-
tailed cross section shape may be unlikely. This is explored further
in the next two scenarios.
5.5. Effect of the floodplain roughness parameter

To separate the effects of cross section geometry, and account
for compensating effects in the roughness parameter (Horritt and
Bates, 2002; Pappenberger et al., 2005), the only parametric change
in this scenario (DW2) is the inclusion of a floodplain roughness
parameter. The cross section shape is the same as in the previous
scenario (DW1) and in the baseline HL-RDHM simulation (KW).

We found for this scenario that the average NS and Rmod value
for the Blue River are improved, relative to the previous scenario,
by 5.7% and 1.5%, respectively. The improvement is smaller for
the Illinois River (NS = 1.2% and Rmod = 0%). In terms of the average
|DQp|/Qp,obs, and relative to the previous scenario, it decreases for
the Blue River (�8.4%) and increases for the Illinois River (3.7%).
The effects are reversed with respect to the average |DTp|/Tp,obs, it
increases for the Blue River (11.3%) while it decreases for the Illi-
nois River (�4.3%). Overall, based on these average values, gains
in predictive capability from this scenario appear possible for both
the Blue and Illinois River, further clarification is sought from tests
(8) and (9).

For the test in (8), we found that in the Blue River 5 out of 11
events can be considered significant, while in the Illinois River 9
out of 23 events are significant. This indicates that for the Blue
and Illinois River, even though some improvement is apparent on
the average NS and Rmod values, the magnitude of the improvement
is not as significant for the majority of events when accounting for
the variability in NS. In other words, this suggests that the perfor-
mance of this scenario is similar to the baseline HL-RDHM simula-
tion for both basins. Further, the test in (9) indicates that 2 out of
11 and 13 out of 23 events in the Blue and Illinois River, respec-
tively, are significantly less than DW4. Thus, further predictive
gains may be possible in the Illinois River from a more detailed
cross section shape but unlikely in the Blue River.

Thus far results from this and the previous scenario suggest that
in the Blue River the kinematic wave approximation and the single
power law cross section shape are only having a small impact on
predictions since little improvement appears possible from includ-
ing more cross section detail. The main reason for this, when con-
trasted against the Illinois River, appears to be the lower overall
performance of the coupled model and the larger influence of lat-
eral inflows in the Blue River. This results in greater uncertainty
being propagated down the main stream reach (Carpenter and
Georgakakos, 2006), and a diminished ability to produce gains
through the routing process alone. More explanation on the hydro-
logical modeling challenges and distinctive physical features in-
volved in the simulation of flows in the Bluer River can be found
in Koren et al. (2004), Smith et al. (2004a,b), and Carpenter and
Georgakakos (2006).

5.6. Effect of the floodplain power law cross section shape

Although the influence of floodplains may be dependent on the
flow magnitude, they can play an important role in flow routing
(Horritt and Bates, 2002; Pappenberger et al., 2005; Nardi et al.,
2006). This is typically recognized in hydraulic routing applications,
e.g. flood mapping (Horritt and Bates, 2002; Pappenberger et al.,
2005; Nardi et al., 2006). In hydrologic modeling the details about
the floodplain cross section geometry are normally not considered
(Koren et al., 2004; Carpenter and Georgakakos, 2006; Lian et al.,
2007). Part of the reason for this may be the lack of cross section
data and lack of simple empirical relationships for floodplain
hydraulic geometry (e.g. Leopold–Maddock type relationships (Leo-
pold and Maddock, 1953)). These limitations are becoming less of a
constraint with the availability of high-resolution DEMs as well as
recent findings in floodplain scaling (Dodov and Foufoula-Georgiou,
2005; Nardi et al., 2006). To provide supporting evidence for the
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implementation of the latter and assess further the required level of
cross section detail, scenario DW3 is examined.

DW3 uses the channel and floodplain power laws in (2) and (7),
respectively, and different roughness parameters for the channel
and floodplain to define the cross section parameterization. The
channel power law parameters are the same as in the previous sce-
narios (DW1 and DW2), the channel and floodplain roughness
parameters are determined by re-calibration, and the floodplain
power law parameters need to be estimated. To estimate the flood-
plain power law parameters, one of the approaches suggested by
Fread and Lewis (1986) is followed. The value of the shape param-
eter d is selected first (see Eq. (7)) based on the available cross sec-
tion data. For Blue we chose an expanding shape with d = 1.6. This
is supported by the cross section data that shows a wide, and
rather flat, floodplain for Blue. We chose d = 0.2 for Illinois also
based on the available data which indicates a more parabolic
shape. The parameter d is kept the same for all the cross sections
while the parameter c (see Eq. (7)) is varied for each cross section.
For both the Blue and Illinois River, the parameter c is estimated at
each location in the main stream reach with a detailed cross sec-
tion by selecting a few data points from the detailed cross section
and then finding an average value of c in Eq. (7). Fig. 3c shows a
representative cross section that combines a power law channel
and floodplain cross section shape.

From the application of this scenario, we obtained an average NS
and Rmod validation value equal to 0.7 and 0.69, respectively, for the
Blue River, and 0.85 and 0.87, respectively, for the Illinois River (Ta-
ble 1). As it was the case in the previous scenarios, the NS and Rmod

gains in the Blue River are on the majority of cases not significant (5
out of 11 events for the test in (8)). For the Illinois River, relative to
the previous scenario, there is a 4.8% gain in terms of Rmod. Improve-
ment in Illinois is also reflected in the decrease caused by DW3 on
the average values of |DQp|/Qp,obs (�38.9%) and |DTp|/Tp,obs (�33.9%).

Further, the test in (8) revealed that in the Illinois River 17 out of
23 events have NS values that are significantly greater than NSKW,
supporting the ability of the Illinois River to benefit considerably
from this scenario. The test in (9) revealed that a lesser number of
NS values can be considered to be less than NSDW1 (10 out of 23).
The possibility of realizing predictive gains in the Illinois River from
a more detailed cross section shape has been reduced, now the
majority of events show insignificant gains, in contrast with the
previous scenarios (DW1 and DW2) where gains were more likely.
This may signify that for the Illinois River there is a limit in the gain
of predictive capability possible from the coupled model structure,
thereby suggesting that the simple power law floodplain shape is
sufficient and the detailed cross section data may not be necessary.
In fact, we arrive at the same conclusion when comparing the re-
sults from the test in (8) for this scenario and DW4. Both, DW3
and DW4, result in the same number of significant events.
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probability plot of the residuals of the regression of NE0(t) on the series NQsim.
6. Evaluation based on predictive uncertainty

As another way of evaluating the coupled simulations, predic-
tive uncertainty is determined by estimating confidence intervals
(CIs) using a stochastic method (Kelly and Krzysztofowicz, 1997;
Montanari and Brath, 2004). The stochastic method employs a
meta-Gaussian approach to estimate the probability distribution
of the coupled model errors conditioned by the value of the simu-
lated flows (Kelly and Krzysztofowicz, 1997; Montanari and Brath,
2004). This method is desirable because, within a spatially distrib-
uted and externally coupled framework, it is computationally effi-
cient and straightforward to implement (Montanari and Brath,
2004).

To apply the meta-Gaussian model, it is assumed that the
dependence of the normalized series of simulated flows and
stabilized errors is linear and normal (Montanari and Brath,
2004). Ultimately the 90% CIs are estimated as follows (Montanari
and Brath, 2004):

Q�sim ¼ Q sim þ NQT�1
E0 ½lðNE0ðtÞjNQsimÞ

� 1:645rðNE0ðtÞjNQsimÞ�f ðQ simÞ þ lE0 ð10Þ

where Qþsim and Q�sim are the values of the upper and lower bounds,
respectively. Qsim is the simulated flow and E0 denotes the stabilized
errors. NQT�1

E0 is the inverse of the standard normal quantile trans-
form (maps the transformed errors back to non-normalized space).
The NQT is also used to normalize the simulated flows (NQsim) and
the stabilized errors (NE0(t)). l(NE0(t)|NQtsim) and r(NE0(t)|NQsim)
are the conditional mean and standard deviation of the stabilized
errors in normalized space, respectively. f(Qsim) is the stabilizing
function as proposed in Montanari and Brath (2004), and lE0 is
the mean of the stabilized errors. In (10), the ±sign is positive for
the upper bound and negative for the lower bound. The details
about the theory and derivations underlying the meta-Gaussian
uncertainty method are reported elsewhere (Kelly and Krzysztofo-
wicz, 1997; Montanari and Brath, 2004).

From (10) we determined the 90% CIs for the baseline coupled
simulation (DW4). To evaluate the validity of the assumptions
underlying the uncertainty method, the residuals from the linear
regression of NE0(t) on the series NQsim for DW4 are shown for
the Blue and Illinois River in Figs. 6 and 7, respectively. Figs. 6a
and 7a are used to verify the variance stabilizing transformation
for the residuals while Figs. 6b and 7b verify the normality
assumption. Both Figs. 6a and 7a do not show any marks of sys-
tematic deviations or a fan shaped residual cloud, suggesting that
the errors are reasonably stable for both the Blue and Illinois River,
respectively. Similarly, Figs. 6b and 7b show an acceptably good fit
between the distribution of the residuals and the normal line for
both the Blue and Illinois River, respectively, confirming they are
approximately normal.

The application of (10) to represent CIs for the Blue River is
illustrated in Fig. 8. Fig. 8 shows the 90% CIs for DW4 plotted with
the hydrographs for all scenarios and baseline simulations, for six
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individual storms events in the Blue River. From Fig. 8, the CIs for
the Blue River tend to encompass the range of observations as well
as the flows associated with the scenarios and baseline simula-
tions. However, a tendency for the baseline HL-RDHM simulation
Fig. 8. Simulated flows and 90% CIs for six storm events in the Blue River basin during the
flows shown include the HL-RDHM baseline simulation (KW), the baseline coupled simu
and DW3). The 90% CIs shown are for DW4.
to consistently have flows in the receding limb of the hydrographs
that are outside the CIs is noted. This is possibly a benefit from
implementing dynamic wave routing in the Blue River that could
not be revealed by the performance criteria and hypothesis tests
previously considered, but becomes apparent when the simula-
tions and CIs are plotted in conjunction. To confirm that there is
more of a dynamic effect in the Blue River, we examined the Fro-
ude number and the simulated stage-discharge rating curves from
the HEC-RAS model for the Illinois and Blue River outlet points. For
the Blue River, we found Froude numbers that are much less than 1
(approximately within the range 0.01-0.35) and observed that rat-
ing curves do exhibit more dynamic looping.

Fig. 9 shows the CIs and coupled simulations for six individual
storm events in the Illinois River. As in the Blue River, the CIs tend
to cover the range of flows associated with the observations, sce-
narios, and baseline simulations. However, the CIs are narrower
in the Illinois River than in the Blue River. Take for example the
event in Fig. 8d for the Blue River. For this event, the observed peak
flow is approximately 180 m3/s and the CIs about the observed
peak range from approximately 60–200 m3/s. A similar event in
the Illinois River, say the event in Fig. 9b (which has a similar ob-
served peak flow as the Blue River event in Fig. 8d), is bounded by
CIs that are approximately equal to 120 and 190 m3/s. This CI range
is narrower (roughly half the size) than that in the Blue River. The
estimated CIs are in general agreement with the results from Sec-
tion 5, the relatively low performance of the Blue River simula-
tions, as quantified for example by the NS coefficient, is
associated with relatively larger predictive uncertainty, whereas
in the Illinois River the opposite is observed.

Further, it seems likely that the coupled framework is able to re-
duce predictive uncertainty. Unfortunately, we can not compare
the CIs for the two baseline simulations directly. We found in the
validation period (observed streamflows at the upstream boundary). The simulated
lation (DW4), and the three cross section parameterization scenarios (DW1, DW2,



Fig. 9. Simulated flows and 90% CIs for six storm events in the Illinois River basin during the validation period (observed streamflows at the upstream boundary). The
simulated flows shown include the HL-RDHM baseline simulation (KW), the baseline coupled simulation (DW4), and the three cross section parameterization scenarios
(DW1, DW2, and DW3). The 90% CIs shown are for DW4.
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CIs for KW important deviations from normality in its error distri-
bution. However, as expected for a 90% level of confidence, approx-
imately 10% of the observed data points for the baseline coupled
simulation (DW4) fall outside the CIs. In contrast, for the baseline
HL-RDHM simulation (KW), approximately 20% and 14% of the
data fall outside the CIs for the Blue and Illinois River, respectively.
In the Blue River, 5% and 15% of the data fall outside the lower and
upper bound, respectively, and in the Illinois River 5% and 9%,
respectively. This suggests that KW is likely to have a greater over-
all uncertainty than DW4 in both basins. Further, this observation
follows from what we previously saw in the measures of model
performance and the hypothesis tests on NS values for the baseline
simulations. We saw that DW4 has a better performance, as re-
flected in the greater average NS and Rmod values, and that in-
creases in the NS values tend to become more significant as one
includes additional cross section detail and approaches the coupled
baseline simulation, both of which imply less uncertainty in DW4.

7. Conclusions

From the application and evaluation of the coupled framework
to the Blue and Illinois River basins, we can draw the following
conclusions:

1. The comparison of the two baseline simulations indicated an
ability to obtain predictive gains with the coupled framework.
For example, in the Blue and Illinois River basins, the NS and
Rmod improved with the coupling on average by approximately
3.9% and 1.3%, respectively. This type of coupled model struc-
ture, although somewhat more common for operational appli-
cations involving large rivers, is less common in hydrologic
modeling of headwater basins, and its benefits in an operational
modeling context are yet to be fully exploited.
2. For the first scenario tried, where the only change relative to the
HL-RDHM baseline simulation was the use of dynamic wave as
opposed to kinematic wave, we did not find a considerable
improvement based on the evaluation performed. This we
interpreted as indicating that dynamic wave alone may be unli-
kely to produce gains for flow predictions in the selected reach
in the Blue and Illinois River basins.

3. The second scenario included an additional roughness parame-
ter to differentiate between the conveyance of below and above
bank-full flows. We found relative to the first scenario some
improvement based on the NS and Rmod values. The values on
average increased in both basins. However, from the hypothesis
tests on NS values it was found that the improvements were not
significant for the majority of the events. Based on the latter, we
find little benefit in using an additional roughness parameter for
the single power law cross sections in the Blue and Illinois River.

4. The last scenario, which considered different power laws for the
channel and floodplain portions of the cross section, showed
improvements in the Illinois River basin. These improvements
were comparable to the ones obtained from using detailed cross
section data. This suggests that detailed data may not always be
necessary. This will need to be explored further and it could serve
as a way to simplify data requirements in other applications of
the coupled framework. This result is consistent with NWS
dynamic hydraulic modeling experiences on large rivers where
simplified cross section representations that preserve the
approximate area-elevation relationships from detailed cross
sections work well. Further, in terms of both the average NS and
Rmod values, all the scenarios showed some improvement for Blue
and only the last scenario showed improvements for Illinois.

5. The difficulties in achieving predictive gains for the Blue River
from the scenarios tried are mostly attributed to the lower
accuracy of runoff simulations and the larger contribution of
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lateral inflows in this basin. The role played by these two factors
could be another area for future work, as they could help define
the conditions for which the coupled framework is most likely
to produce benefits.

6. From the point of view of predictive uncertainty, there is a
potential for decreasing overall uncertainty with the coupled
framework. This we concluded from quantitative and qualita-
tive assessments of the uncertainty associated with the baseline
simulations, and by considering our previous findings based on
measures of model performance and hypothesis testing. Addi-
tionally, the application of the stochastic uncertainty method
demonstrated the usefulness of this method for estimating CIs
when models are externally coupled.

7. Uncertainty analysis also visually highlighted limitations of the
kinematic wave routing approach in matching the observed
recessions for the Blue River, information that was not apparent
through examination of measures of model performance alone.
We hypothesize that this is due to dynamic loop effects in the
Blue River. While this study evaluated model performance
based on the ability to predict flow, future work on coupled
frameworks of this type should also consider the ability to pre-
dict stage when dynamic loop effects are present.

To further apply this research to the distributed modeling ef-
forts in OHD and fully exploit the benefits of the coupled frame-
work, it is recommended that the coupling be enhanced so that
information between the models can be transferred without man-
ual intervention. This will not only facilitate implementation in an
operational setting, but it will allow application to a larger number
of basins, simultaneous hydrologic and hydraulic calibration, and
uncertainty and/or sensitivity analysis. These in turn will help
identify the largest sources of uncertainty and the role of lateral in-
flows and scale on coupled simulations. Additionally, to effectively
use resources, it will be beneficial to develop a priori criteria for
selecting those basins where the coupled framework is most likely
to provide benefits.
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